70 research outputs found

    A local families index formula for d-bar operators on punctured Riemann surfaces

    Full text link
    Using heat kernel methods developed by Vaillant, a local index formula is obtained for families of d-bar operators on the Teichmuller universal curve of Riemann surfaces of genus g with n punctures. The formula also holds on the moduli space M{g,n} in the sense of orbifolds where it can be written in terms of Mumford-Morita-Miller classes. The degree two part of the formula gives the curvature of the corresponding determinant line bundle equipped with the Quillen connection, a result originally obtained by Takhtajan and Zograf.Comment: 47 page

    The Bismut-Elworthy-Li type formulae for stochastic differential equations with jumps

    Full text link
    Consider jump-type stochastic differential equations with the drift, diffusion and jump terms. Logarithmic derivatives of densities for the solution process are studied, and the Bismut-Elworthy-Li type formulae can be obtained under the uniformly elliptic condition on the coefficients of the diffusion and jump terms. Our approach is based upon the Kolmogorov backward equation by making full use of the Markovian property of the process.Comment: 29 pages, to appear in Journal of Theoretical Probabilit

    The differential analytic index in Simons-Sullivan differential K-theory

    Full text link
    We define the Simons-Sullivan differential analytic index by translating the Freed-Lott differential analytic index via explicit ring isomorphisms between Freed-Lott differential K-theory and Simons-Sullivan differential K-theory. We prove the differential Grothendieck-Riemann-Roch theorem in Simons-Sullivan differential K-theory using a theorem of Bismut.Comment: 14 pages. Comments are welcome. Final version. To appear in Annals of Global Analysis and Geometr

    Stable bundles on hypercomplex surfaces

    Full text link
    A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin's and Gualtieri's generalized complex geometry, (4,4)-manifolds are called ``generalized hyperkaehler manifolds''. We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a (4,4)-structure.Comment: 17 pages. Version 3.0: reference adde

    Some Relations between Twisted K-theory and E8 Gauge Theory

    Full text link
    Recently, Diaconescu, Moore and Witten provided a nontrivial link between K-theory and M-theory, by deriving the partition function of the Ramond-Ramond fields of Type IIA string theory from an E8 gauge theory in eleven dimensions. We give some relations between twisted K-theory and M-theory by adapting the method of Diaconescu-Moore-Witten and Moore-Saulina. In particular, we construct the twisted K-theory torus which defines the partition function, and also discuss the problem from the E8 loop group picture, in which the Dixmier-Douady class is the Neveu-Schwarz field. In the process of doing this, we encounter some mathematics that is new to the physics literature. In particular, the eta differential form, which is the generalization of the eta invariant, arises naturally in this context. We conclude with several open problems in mathematics and string theory.Comment: 23 pages, latex2e, corrected minor errors and typos in published versio

    On the boundary coupling of topological Landau-Ginzburg models

    Full text link
    I propose a general form for the boundary coupling of B-type topological Landau-Ginzburg models. In particular, I show that the relevant background in the open string sector is a (generally non-Abelian) superconnection of type (0,1) living in a complex superbundle defined on the target space, which I allow to be a non-compact Calabi-Yau manifold. This extends and clarifies previous proposals. Generalizing an argument due to Witten, I show that BRST invariance of the partition function on the worldsheet amounts to the condition that the (0,<= 2) part of the superconnection's curvature equals a constant endomorphism plus the Landau-Ginzburg potential times the identity section of the underlying superbundle. This provides the target space equations of motion for the open topological model.Comment: 21 page

    Gauge-fixing, semiclassical approximation and potentials for graded Chern-Simons theories

    Get PDF
    We perform the Batalin-Vilkovisky analysis of gauge-fixing for graded Chern-Simons theories. Upon constructing an appropriate gauge-fixing fermion, we implement a Landau-type constraint, finding a simple form of the gauge-fixed action. This allows us to extract the associated Feynman rules taking into account the role of ghosts and antighosts. Our gauge-fixing procedure allows for zero-modes, hence is not limited to the acyclic case. We also discuss the semiclassical approximation and the effective potential for massless modes, thereby justifying some of our previous constructions in the Batalin-Vilkovisky approach.Comment: 46 pages, 4 figure

    Equidistribution of zeros of holomorphic sections in the non compact setting

    Full text link
    We consider N-tensor powers of a positive Hermitian line bundle L over a non-compact complex manifold X. In the compact case, B. Shiffman and S. Zelditch proved that the zeros of random sections become asymptotically uniformly distributed with respect to the natural measure coming from the curvature of L, as N tends to infinity. Under certain boundedness assumptions on the curvature of the canonical line bundle of X and on the Chern form of L we prove a non-compact version of this result. We give various applications, including the limiting distribution of zeros of cusp forms with respect to the principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the higher dimensional case of arithmetic quotients and the case of orthogonal polynomials with weights at infinity. We also give estimates for the speed of convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape

    Holomorphic potentials for graded D-branes

    Get PDF
    We discuss gauge-fixing, propagators and effective potentials for topological A-brane composites in Calabi-Yau compactifications. This allows for the construction of a holomorphic potential describing the low-energy dynamics of such systems, which generalizes the superpotentials known from the ungraded case. Upon using results of homotopy algebra, we show that the string field and low energy descriptions of the moduli space agree, and that the deformations of such backgrounds are described by a certain extended version of `off-shell Massey products' associated with flat graded superbundles. As examples, we consider a class of graded D-brane pairs of unit relative grade. Upon computing the holomorphic potential, we study their moduli space of composites. In particular, we give a general proof that such pairs can form acyclic condensates, and, for a particular case, show that another branch of their moduli space describes condensation of a two-form.Comment: 47 pages, 7 figure
    • …
    corecore