3 research outputs found

    Prediction of the Viscosity Radius and the Size Exclusion Chromatography Behavior of PEGylated Proteins

    Get PDF
    Size exclusion chromatography (SEC) was used to determine the viscosity radii of equivalent spheres for proteins covalently grafted with poly(ethylene glycol) (PEG). The viscosity radius of such PEGylated proteins was found to depend on the molecular weight of the native protein and the total weight of grafted PEG but not on PEG molecular weight, or PEG-to-protein molar grafting ratio. Results suggest grafted PEG's form a dynamic layer over the surface of proteins. The geometry of this layer results in a surface area-to-volume ratio approximately equal to that of a randomly coiled PEG molecule of equivalent total molecular weight. Two simple methods are given to predict the viscosity radius of PEGylated proteins. Both methods accurately predicted (3% absolute error) the viscosity radii of various PEG-proteins produced using three native proteins, -lactalbumin (14.2 kDa MW), -lactoglobulin dimer (37.4 kDa MW), and bovine serum albumin (66.7 kDa MW), three PEG reagents (2400, 5600, and 22500 MW), and molar grafting ratios of 0 to 8. Accurate viscosity radius prediction allows calculation of the distribution coefficient, Kav, for PEG-proteins in SEC. The suitability of a given SEC step for the analytical or preparative fractionation of different PEGylated protein mixtures may therefore be assessed mathematically. The methods and results offer insight to several factors related to the production, purification, and uses of PEGylated proteins

    PEG-proteins: Reaction engineering and separation issues

    Get PDF
    Poly(ethylene glycol)-conjugated (or PEGylated) proteins are an increasingly important class of therapeutic proteins that offer improved in vivo circulation half lives over their corresponding native forms. Their production involves covalent attachment of one or more poly(ethylene glycol) molecules to a native protein, followed by purification. Because of the extremely high costs involved in producing native therapeutic proteins it is important that subsequent PEGylation processes are as efficient as possible. In this paper, reaction engineering and purification issues for PEGylated proteins are reviewed. Paramount considerations for PEGylation reactions are specificity with respect to the conjugation site and overall yield. Batch PEGylation reaction methods are discussed, along with innovative methods using packed bed or ā€œon-columnā€ approaches to improve specificity and yield. Purification methods are currently dominated by ion exchange and size exclusion chromatography. Other methods in common use for protein separations, including hydrophobic interaction chromatography, affinity chromatography and membrane separations, are rarely used in PEGylated protein purification schemes. A better understanding of the effects of PEGylation on the physicochemical properties of proteins (isoelectric point, surface charge density and distribution, molecular size and relative hydrophobicity) and interactions between PEGylated proteins and surfaces is needed for the future development of optimal purification processes and media

    Multistage Magnetic and Electrophoretic Extraction of Cells, Particles and Macromolecules

    No full text
    corecore