1,071 research outputs found

    Complete Analysis of Baryon Magnetic Moments in 1/N_c

    Full text link
    We generate a complete basis of magnetic moment operators for the N_c = 3 ground-state baryons in the 1/N_c expansion, and compute and tabulate all associated matrix elements. We then compare to previous results derived in the literature and predict additional relations among baryon magnetic moments holding to subleading order in 1/N_c and flavor SU(3) breaking. Finally, we predict all unknown diagonal and transition magnetic moments to <= 0.15 mu_N accuracy, and suggest possible experimental measurements to improve the analysis even further.Comment: 28 pages (including 11 tables), ReVTeX. One reference and grant acknowledgment adde

    Large N_c Limit of Spin-Flavor Breaking in Excited Baryon Levels

    Full text link
    Spin-flavor symmetry breaking in the levels of excited Baryons are studied to leading order in the 1/NcN_c expansion. This breaking occurs at zeroth order. For non-strange Baryons with a single quark excited, it is shown that to first order of perturbation theory the breaking is given by one 1-body operator (spin-orbit), and three 2-body operators, all involving the orbital angular momentum of the excited quark. Higher-body operators can be reduced to that set of operators. As illustration, p-wave Baryons are briefly discussed.Comment: 16 pages, one table, Latex file; title changed, some omitted operators have been included and corrections to the results have been mad

    Baryon masses at second order in large-NN chiral perturbation theory

    Get PDF
    We consider flavor breaking in the the octet and decuplet baryon masses at second order in large-NN chiral perturbation theory, where NN is the number of QCD colors. We assume that 1/N1/NFms/Λmu,d/Λ,αEM1/N \sim 1/N_F \sim m_s / \Lambda \gg m_{u,d}/\Lambda, \alpha_{EM}, where NFN_F is the number of light quark flavors, and mu,d,s/Λm_{u,d,s} / \Lambda are the parameters controlling SU(NF)SU(N_F) flavor breaking in chiral perturbation theory. We consistently include non-analytic contributions to the baryon masses at orders mq3/2m_q^{3/2}, mq2lnmqm_q^2 \ln m_q, and (mqlnmq)/N(m_q \ln m_q) / N. The mq3/2m_q^{3/2} corrections are small for the relations that follow from SU(NF)SU(N_F) symmetry alone, but the corrections to the large-NN relations are large and have the wrong sign. Chiral power-counting and large-NN consistency allow a 2-loop contribution at order mq2lnmqm_q^2 \ln m_q, and a non-trivial explicit calculation is required to show that this contribution vanishes. At second order in the expansion, there are eight relations that are non-trivial consequences of the 1/N1/N expansion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 \MeV for the \De I = 0 mass differences and 0.35 \MeV for the \De I \ne 0 mass differences, consistent with the expectation that the error is of order 1/N210%1/N^2 \sim 10\%.Comment: 19 pages, 2 uuencoded ps figs, uses revte

    The large-N(c) nuclear potential puzzle

    Full text link
    An analysis of the baryon-baryon potential from the point of view of large-N(c) QCD is performed. A comparison is made between the N(c)-scaling behavior directly obtained from an analysis at the quark-gluon level to the N(c)-scaling of the potential for a generic hadronic field theory in which it arises via meson exchanges and for which the parameters of the theory are given by their canonical large-N(c) scaling behavior. The purpose of this comparison is to use large-N(c) consistency to test the widespread view that the interaction between nuclei arises from QCD through the exchange of mesons. Although at the one- and two-meson exchange level the scaling rules for the potential derived from the hadronic theory matches the quark-gluon level prediction, at the three- and higher-meson exchange level a generic hadronic theory yields a potential which scales with N(c) faster than that of the quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure

    Deriving Gauge Symmetry and Spontaneous Lorentz Violation

    Full text link
    We consider a class of field theories with a four-vector field Aμ(x)A_{\mu}(x) in addition to other fields supplied with a global charge symmetry - theories which have partial gauge symmetry in the sense of only imposing it on those terms in the Lagrangian density which have derivatives as factors in them. We suppose that spontaneous Lorentz invariance breaking occurs in such a theory due to the four-vector field taking a non-zero vacuum expectation value. Under some very mild assumptions, we show that this Lorentz violation is not observable and the whole theory is practically gauge invariant. A very important presupposition for this theorem is that an initial condition is imposed on the no-derivative expressions corresponding to the early Universe being essentially in a vacuum state. This condition then remains true forever and can be interpreted as a gauge constraint. We formulate the conditions under which the spontaneous Lorentz violation becomes observable. Spontaneously broken Lorentz invariance could be seen by some primordially existing or created "fossil" charges with the property of moving through the Universe with a fixed velocity.Comment: Extended versio

    Testing models with non-minimal Higgs sector through the decay t->q+WZ

    Get PDF
    We study the contribution of charged Higgs boson to the rare decay of the top quark t->q+WZ (q=d,s,b) in models with Higgs sector that includes doublets and triplets. Higgs doublets are needed to couple charged Higgs with quarks, whereas the Higgs triplets are required to generate the non-standard vertex HWZ at tree-level. It is found that within a model that respect the custodial SU(2) symmetry and avoids flavour changing neutral currents by imposing discrete symmetries, the decay mode t->b+WZ, can reach a branching ratio of order 0.0178, whereas the decay modes t->(d,s)+WZ, can reach a similar branching ratio in models where flavour changing neutral currents are suppressed by flavour symmetries.Comment: Typeset using REVTEX and EPSF, 5 pag, 2 figure

    Regularization for effective field theory with two heavy particles

    Get PDF
    A regularization for effective field theory with two propagating heavy particles is constructed. This regularization preserves the low-energy analytic structure, implements a low-energy power counting for the one-loop diagrams, and preserves symmetries respected by dimensional regularization.Comment: 12 pages, 4 figures. Some typos have been corrected, a sentence has been moved, and two formulas have been further simplifie

    Excited Baryon Decay Widths in Large N_c QCD

    Full text link
    We study excited baryon decay widths in large N_c QCD. It was suggested previously that some spin-flavor mixed-symmetric baryon states have strong couplings of O(N_c^{-1/2}) to nucleons [implying narrow widths of O(1/N_c)], as opposed to the generic expectation based on Witten's counting rules of an O(N_c^0) coupling. The calculation obtaining these narrow widths was performed in the context of a simple quark-shell model. This paper addresses the question of whether the existence of such narrow states is a general property of large N_c QCD. We show that a general large N_c QCD analysis does not predict such narrow states; rather they are a consequence of the extreme simplicity of the quark model.Comment: 9 page
    corecore