277 research outputs found
Froth-like minimizers of a non local free energy functional with competing interactions
We investigate the ground and low energy states of a one dimensional non
local free energy functional describing at a mean field level a spin system
with both ferromagnetic and antiferromagnetic interactions. In particular, the
antiferromagnetic interaction is assumed to have a range much larger than the
ferromagnetic one. The competition between these two effects is expected to
lead to the spontaneous emergence of a regular alternation of long intervals on
which the spin profile is magnetized either up or down, with an oscillation
scale intermediate between the range of the ferromagnetic and that of the
antiferromagnetic interaction. In this sense, the optimal or quasi-optimal
profiles are "froth-like": if seen on the scale of the antiferromagnetic
potential they look neutral, but if seen at the microscope they actually
consist of big bubbles of two different phases alternating among each other. In
this paper we prove the validity of this picture, we compute the oscillation
scale of the quasi-optimal profiles and we quantify their distance in norm from
a reference periodic profile. The proof consists of two main steps: we first
coarse grain the system on a scale intermediate between the range of the
ferromagnetic potential and the expected optimal oscillation scale; in this way
we reduce the original functional to an effective "sharp interface" one. Next,
we study the latter by reflection positivity methods, which require as a key
ingredient the exact locality of the short range term. Our proof has the
conceptual interest of combining coarse graining with reflection positivity
methods, an idea that is presumably useful in much more general contexts than
the one studied here.Comment: 38 pages, 2 figure
Shell Model for Drag Reduction with Polymer Additive in Homogeneous Turbulence
Recent direct numerical simulations of the FENE-P model of non-Newtonian
hydrodynamics revealed that the phenomenon of drag reduction by polymer
additives exists (albeit in reduced form) also in homogeneous turbulence. We
introduce here a simple shell model for homogeneous viscoelastic flows that
recaptures the essential observations of the full simulations. The simplicity
of the shell model allows us to offer a transparent explanation of the main
observations. It is shown that the mechanism for drag reduction operates mainly
on the large scales. Understanding the mechanism allows us to predict how the
amount of drag reduction depends of the various parameters in the model. The
main conclusion is that drag reduction is not a universal phenomenon, it peaks
in a window of parameters like Reynolds number and the relaxation rate of the
polymer
On the absence of ferromagnetism in typical 2D ferromagnets
We consider the Ising systems in dimensions with nearest-neighbor
ferromagnetic interactions and long-range repulsive (antiferromagnetic)
interactions which decay with a power, , of the distance. The physical
context of such models is discussed; primarily this is and where,
at long distances, genuine magnetic interactions between genuine magnetic
dipoles are of this form. We prove that when the power of decay lies above
and does not exceed , then for all temperatures, the spontaneous
magnetization is zero. In contrast, we also show that for powers exceeding
(with ) magnetic order can occur.Comment: 15 pages, CMP style fil
Dispersion and collapse in stochastic velocity fields on a cylinder
The dynamics of fluid particles on cylindrical manifolds is investigated. The
velocity field is obtained by generalizing the isotropic Kraichnan ensemble,
and is therefore Gaussian and decorrelated in time. The degree of
compressibility is such that when the radius of the cylinder tends to infinity
the fluid particles separate in an explosive way. Nevertheless, when the radius
is finite the transition probability of the two-particle separation converges
to an invariant measure. This behavior is due to the large-scale
compressibility generated by the compactification of one dimension of the
space
The Steady State Fluctuation Relation for the Dissipation Function
We give a proof of transient fluctuation relations for the entropy production
(dissipation function) in nonequilibrium systems, which is valid for most time
reversible dynamics. We then consider the conditions under which a transient
fluctuation relation yields a steady state fluctuation relation for driven
nonequilibrium systems whose transients relax, producing a unique
nonequilibrium steady state. Although the necessary and sufficient conditions
for the production of a unique nonequilibrium steady state are unknown, if such
a steady state exists, the generation of the steady state fluctuation relation
from the transient relation is shown to be very general. It is essentially a
consequence of time reversibility and of a form of decay of correlations in the
dissipation, which is needed also for, e.g., the existence of transport
coefficients. Because of this generality the resulting steady state fluctuation
relation has the same degree of robustness as do equilibrium thermodynamic
equalities. The steady state fluctuation relation for the dissipation stands in
contrast with the one for the phase space compression factor, whose convergence
is problematic, for systems close to equilibrium. We examine some model
dynamics that have been considered previously, and show how they are described
in the context of this work.Comment: 30 pages, 1 figur
Fluctuation Relations for Diffusion Processes
The paper presents a unified approach to different fluctuation relations for
classical nonequilibrium dynamics described by diffusion processes. Such
relations compare the statistics of fluctuations of the entropy production or
work in the original process to the similar statistics in the time-reversed
process. The origin of a variety of fluctuation relations is traced to the use
of different time reversals. It is also shown how the application of the
presented approach to the tangent process describing the joint evolution of
infinitesimally close trajectories of the original process leads to a
multiplicative extension of the fluctuation relations.Comment: 38 page
Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations
The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, mnu = 0.32+-0.11 eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass involved in neutrinoless double beta decay (bb0nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based bb0nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg year, could already have a sizable opportunity to observe bb0nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely
The Free Energy of the Quantum Heisenberg Ferromagnet at Large Spin
We consider the spin-S ferromagnetic Heisenberg model in three dimensions, in
the absence of an external field. Spin wave theory suggests that in a suitable
temperature regime the system behaves effectively as a system of
non-interacting bosons (magnons). We prove this fact at the level of the
specific free energy: if and the inverse temperature in such a way that stays constant, we rigorously show that
the free energy per unit volume converges to the one suggested by spin wave
theory. The proof is based on the localization of the system in small boxes and
on upper and lower bounds on the local free energy, and it also provides
explicit error bounds on the remainder.Comment: 11 pages, pdfLate
- …