838 research outputs found
Detection of magnetized quark-nuggets, a candidate for dark matter
AbstractQuark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe’s mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~1012-T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth’s magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.</jats:p
The leading Ruelle resonances of chaotic maps
The leading Ruelle resonances of typical chaotic maps, the perturbed cat map
and the standard map, are calculated by variation. It is found that, excluding
the resonance associated with the invariant density, the next subleading
resonances are, approximately, the roots of the equation , where
is a positive number which characterizes the amount of stochasticity
of the map. The results are verified by numerical computations, and the
implications to the form factor of the corresponding quantum maps are
discussed.Comment: 5 pages, 4 figures included. To appear in Phys. Rev.
Applying spatial reasoning to topographical data with a grounded geographical ontology
Grounding an ontology upon geographical data has been pro-
posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of
points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou
Typical support and Sanov large deviations of correlated states
Discrete stationary classical processes as well as quantum lattice states are
asymptotically confined to their respective typical support, the exponential
growth rate of which is given by the (maximal ergodic) entropy. In the iid case
the distinguishability of typical supports can be asymptotically specified by
means of the relative entropy, according to Sanov's theorem. We give an
extension to the correlated case, referring to the newly introduced class of
HP-states.Comment: 29 pages, no figures, references adde
Safety Outcomes and Near-Adult Height Gain of Growth Hormone-Treated Children with SHOX Deficiency: Data from an Observational Study and a Clinical Trial
Background/Aims: To assess auxological and safety data for growth hormone (GH)-Treated children with SHOX deficiency. Methods: Data were examined for GH-Treated SHOX-deficient children (n = 521) from the observational Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS). For patients with near-Adult height information, GeNeSIS results (n = 90) were compared with a clinical trial (n = 28) of SHOX-deficient patients. Near-Adult height was expressed as standard deviation score (SDS) for chronological age, potentially increasing the observed effect of treatment. Results: Most SHOX-deficient patients in GeNeSIS had diagnoses of Leri-Weill syndrome (n = 292) or non-syndromic short stature (n = 228). For GeNeSIS patients with near-Adult height data, mean age at GH treatment start was 11.0 years, treatment duration 4.4 years, and height SDS gain 0.83 (95% confidence interval 0.49-1.17). Respective ages, GH treatment durations and height SDS gains for GeNeSIS patients prepubertal at baseline (n = 42) were 9.2 years, 6.0 years and 1.19 (0.76-1.62), and for the clinical trial cohort they were 9.2 years, 6.0 years and 1.25 (0.92-1.58). No new GH-related safety concerns were identified. Conclusion: Patients with SHOX deficiency who had started GH treatment before puberty in routine clinical practice had a similar height gain to that of patients in the clinical trial on which approval for the indication was based, with no new safety concerns
Approximating open quantum system dynamics in a controlled and efficient way: A microscopic approach to decoherence
We demonstrate that the dynamics of an open quantum system can be calculated
efficiently and with predefined error, provided a basis exists in which the
system-environment interactions are local and hence obey the Lieb-Robinson
bound. We show that this assumption can generally be made. Defining a dynamical
renormalization group transformation, we obtain an effective Hamiltonian for
the full system plus environment that comprises only those environmental
degrees of freedom that are within the effective light cone of the system. The
reduced system dynamics can therefore be simulated with a computational effort
that scales at most polynomially in the interaction time and the size of the
effective light cone. Our results hold for generic environments consisting of
either discrete or continuous degrees of freedom
In the eye of the beholder:promoting learner-centric design to develop mobile games for learning
Out of the project EMuRgency a game-based learning environment evolved, which trains school children in providing reanimation and cardiopulmonary resuscitation (CPR). The application gets players to act as if they were in a real case of emergency. This paper reports on a formal usability study conducted with two different groups of learners, regular learners and learners with special educational needs (SEN). With the study we compared the two groups of learners with regard to game usability and effectiveness of the intervention. Our intention was to better understand the different needs and requirements to learning materials that game designer need to take into consideration in order to make the learning experience successful for both groups. A total of 89 children played the game simulation. Results showed differences in perception and effectiveness of individual mechanisms for the two groups with regard to usability or switching between tasks and mobile device.This publication was partly financed by the European Regional Development Fund (ERDF), regions of the Euregio Meuse-Rhine and the participating institutions under the INTERREG IVa program (EMR.INT4-1.2.-2011-04/070, http://www.emurgency.eu)
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
- …