25 research outputs found
Dynamic p-enrichment schemes for multicomponent reactive flows
We present a family of p-enrichment schemes. These schemes may be separated
into two basic classes: the first, called \emph{fixed tolerance schemes}, rely
on setting global scalar tolerances on the local regularity of the solution,
and the second, called \emph{dioristic schemes}, rely on time-evolving bounds
on the local variation in the solution. Each class of -enrichment scheme is
further divided into two basic types. The first type (the Type I schemes)
enrich along lines of maximal variation, striving to enhance stable solutions
in "areas of highest interest." The second type (the Type II schemes) enrich
along lines of maximal regularity in order to maximize the stability of the
enrichment process. Each of these schemes are tested over a pair of model
problems arising in coastal hydrology. The first is a contaminant transport
model, which addresses a declinature problem for a contaminant plume with
respect to a bay inlet setting. The second is a multicomponent chemically
reactive flow model of estuary eutrophication arising in the Gulf of Mexico.Comment: 29 pages, 7 figures, 3 table
A High-Resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of hurricanes Katrina and Rita
Hurricanes Katrina and Rita were powerful storms that impacted southern Louisiana and Mississippi during the 2005 hurricane season. In Part I, the authors describe and validate a high-resolution coupled riverine flow, tide, wind, wave, and storm surge model for this region. Herein, the model is used to examine the evolution of these hurricanes in more detail. Synoptic histories show how storm tracks, winds, and waves interacted with the topography, the protruding Mississippi River delta, east-west shorelines, manmade structures, and low-lying marshes to develop and propagate storm surge. Perturbations of the model, in which the waves are not included, show the proportional importance of the wave radiation stress gradient induced setup
A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation
A coupled system of wind, wind wave, and coastal circulation models has been implemented for southern Louisiana and Mississippi to simulate riverine flows, tides, wind waves, and hurricane storm surge in the region.The system combines the NOAA Hurricane Research Division Wind Analysis System (H*WIND) and the Interactive Objective Kinematic Analysis (IOKA) kinematic wind analyses, the Wave Model (WAM) offshore and Steady-State Irregular Wave (STWAVE) nearshore wind wave models, and the Advanced Circulation (ADCIRC) basin to channel-scale unstructured grid circulation model. The system emphasizes a high-resolution (down to 50 m) representation of the geometry, bathymetry, and topography; nonlinear coupling of all processes including wind wave radiation stress-induced set up; and objective specification of frictional parameters based on land-cover databases and commonly used parameters. Riverine flows and tides are validated for no storm conditions, while winds, wind waves, hydrographs, and high water marks are validated for Hurricanes Katrina and Rita
A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana
Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m
Tune in to your emotions: a robust personalized affective music player
The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listenersâ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application
Modelling tides in the western North Atlantic using unstructured graded grids
This paper describes grid convergence studies for a finiteâelementâbased tidal model of the western North Atlantic, Gulf of Mexico and Caribbean. The very large computational domain used for this tidal model encompasses both the coastal and the deep ocean and facilitates the specification of boundary conditions. Due to the large variability in depths as well as scale content of the tides within the model domain, an optimal unstructured graded grid with highly variable finite element areas is developed which significantly reduces the size of the discrete problem while improving the accuracy of the computations. The convergence studies include computations for a sequence of regularly discretized grids ranging from a very coarse 1.6° Ă 1.6° mesh to a very fine 6âČ Ă 6âČ to 12âČ Ă 12âČ mesh as well as unstructured graded grids with resolutions varying between 1.6° and 5âČ within each mesh. Resolution requirements are related to depth, gradients in topography as well as the resolution of the coastal boundary. The final optimal graded grid has a tidal response which is comparable to that of the finest regular grid in most regions. The optimal graded grid is then forced with Schwiderski's (1979, 1980, 1981aâg) global model on the open ocean boundary and tidal potential forcing functions within the interior domain. The structure of the tides is examined, computed coâtidal charts are presented and comparisons are made between the computed results and field data at 77 stations within the model domain