10 research outputs found

    Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans

    Full text link
    Abstract. This paper presents a new method for automatic localiza-tion and identification of vertebrae in arbitrary field-of-view CT scans. No assumptions are made about which section of the spine is visible or to which extent. Thus, our approach is more general than previous work while being computationally efficient. Our algorithm is based on re-gression forests and probabilistic graphical models. The discriminative, regression part aims at roughly detecting the visible part of the spine. Ac-curate localization and identification of individual vertebrae is achieved through a generative model capturing spinal shape and appearance. The system is evaluated quantitatively on 200 CT scans, the largest dataset reported for this purpose. We obtain an overall median localization error of less than 6mm, with an identification rate of 81%.

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Exciton polaritons in single and coupled microcavities

    No full text
    Recent work on strong coupling exciton–polariton phenomena in single and coupled microcavities is presented. We describe experiments for single cavities where the strong coupling nature of the excitations manifests itself. It is also shown that coupled cavities enable optically induced coupling between macroscopically separated exciton states to be achieved, and polaritons with strongly anisotropic properties to be realised. Results for both inorganic and organic microcavities are presented

    Foundations and Tools for End-User Architecting

    No full text
    Abstract. Within an increasing number of domains an important emerging need is the ability for technically naïve users to compose computational elements into novel configurations. Examples include astronomers who create new analysis pipelines to process telescopic data, intelligence analysts who must process diverse sources of unstructured text to discover socio-technical trends, and medical researchers who have to process brain image data in new ways to understand disease pathways. Creating such compositions today typically requires low-level technical expertise, limiting the use of computational methods and increasing the cost of using them. In this paper we describe an approach — which we term end-user architecting — that exploits the similarity between such compositional activities and those of software architects. Drawing on the rich heritage of software architecture languages, methods, and tools, we show how those techniques can be adapted to support end users in composing rich computational systems through domain-specific compositional paradigms and component repositories, without requiring that they have knowledge of the low-level implementation details of the components or the compositional infrastructure. Further, we outline a set of open research challenges that the area of end-user architecting raises

    Functional MRI of Sentence Comprehension in Children with Dyslexia: Beyond Word Recognition

    No full text
    Sentence comprehension (SC) studies in typical and impaired readers suggest that reading for meaning involves more extensive brain activation than reading isolated words. Thus far, no reading disability/dyslexia (RD) studies have directly controlled for the word recognition (WR) components of SC tasks, which is central for understanding comprehension processes beyond WR. This experiment compared SC to WR in 29, 9–14 year olds (15 typical and 14 impaired readers). The SC-WR contrast for each group showed activation in left inferior frontal and extrastriate regions, but the RD group showed significantly more activation than Controls in areas associated with linguistic processing (left middle/superior temporal gyri), and attention and response selection (bilateral insula, right cingulate gyrus, right superior frontal gyrus, and right parietal lobe). Further analyses revealed this overactivation was driven by the RD group's response to incongruous sentences. Correlations with out-of-scanner measures showed that better word- and text-level reading fluency was associated with greater left occipitotemporal activation, whereas worse performance on WR, fluency, and comprehension (reading and oral) were associated with greater right hemisphere activation in a variety of areas, including supramarginal and superior temporal gyri. Results provide initial foundations for understanding the neurobiological correlates of higher-level processes associated with reading comprehension

    Platyrrhine Ecophylogenetics in Space and Time

    No full text
    corecore