290 research outputs found
Response to letter: Multiparametric magnetic resonance imaging in patients with nonalcoholic fatty liver disease
Cardiovascular Aspects of Radiolog
Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields
An overview is presented of laser spectroscopy experiments with cold,
trapped, highly-charged ions, which will be performed at the HITRAP facility at
GSI in Darmstadt (Germany). These high-resolution measurements of ground state
hyperfine splittings will be three orders of magnitude more precise than
previous measurements. Moreover, from a comparison of measurements of the
hyperfine splittings in hydrogen- and lithium-like ions of the same isotope,
QED effects at high electromagnetic fields can be determined within a few
percent. Several candidate ions suited for these laser spectroscopy studies are
presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics
(2006
Evidence for a bi-partition of the Younger Dryas Stadial in East Asia associated with inversed climate characteristics compared to Europe
The Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Europe. These records imply that the polar front and westerlies shifted northward, producing a warmer second phase of the YDS in Europe. Here we present multi-proxy data from the sediments of Lake Suigetsu (Japan), as evidence that a related bi-partition of the YDS also occurred in East Asia. Besides showing for the first time that the bi-partition was not limited to the North Atlantic/European region, the data also imply a climatic dipole between Europe and East Asia since the cold-warm characteristics are reversed at Lake Suigetsu. We suggest that changes in eastward moisture transport from the North Atlantic are the primary mechanism by which the teleconnection can be explained
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Potential Scattering in Dirac Field Theory
We develop the potential scattering of a spinor within the context of
perturbation field theory. As an application, we reproduce, up to second order
in the potential, the diffusion results for a potential barrier of quantum
mechanics. An immediate consequence is a simple generalization to arbitrary
potential forms, a feature not possible in quantum mechanics.Comment: 7 page
Evaluation of clinical applicability of coronary artery calcium assessment on non-gated chest computed tomography compared with the classic Agatston score on cardiac computed tomography
Given current pretest probability (PTP) estimations tend to overestimate patients' risk for obstructive coronary artery disease, evaluation of patients' coronary artery calcium (CAC) is more precise. The value of CAC assessment with the Agatston score on cardiac computed tomography (CT) for risk estimation has been well indicated in patients with stable chest pain. CAC can be equally well assessed on routine non-gated chest CT, which is often available. This study aims to determine the clinical applicability of CAC assess- ment on non-gated CT in patients with stable chest pain compared with the classic Agat- ston score on gated CT. Consecutive patients referred for evaluation of the Agatston score, who had a previously performed non-gated chest CT for evaluation of noncardiac diseases, were included. CAC on non-gated CT was ordinally scored. Subsequently, patients were stratified according to CAC severity and PTP. The agreement and correla- tion between the classic Agatston score and CAC on non-gated CT were evaluated. The discriminative power for risk reclassification of both CAC assessment methods was assessed. Invasive coronary angiography was used as the gold standard, when available. A total of 140 patients aged between 30 and 88 years were included. The agreement between ordinally scored CAC and the Agatston score was excellent (k=0.82) and the correlation strong (r=0.94). Most patients (80%) with an intermediate PTP had no or mild CAC on non-gated CT. They were reclassified at low risk with 100% accuracy compared with invasive coronary angiography. Similarly, 86% of patients had an Agatston score <300. These patients were reclassified with 98% accuracy. In patients with high PTP, the accu- racy remained substantial and comparable, 94% and 89%, respectively. In conclusion, we believe this is the first study to assess the clinical applicability of CAC on non-gated CT in patients with stable chest pain, compared with the classic Agatston score. The agree- ment between methods was excellent and the correlation strong. Furthermore, CAC assessment on non-gated CT could reclassify patients' risk for obstructive coronary artery disease as accurately as could the classic Agatston score.(c) 2023 The Author(s). Published by Elsevier Inc.This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/) (Am J Cardiol 2023;208:92-100)Radiolog
Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus
0.001). CONCLUSIONS: In T2DM patients, pioglitazone was associated with improvement in some measures of left ventricular diastolic function, myocardial glucose uptake, and whole-body insulin sensitivity. The functional changes, however, were not associated with myocardial substrate and high-energy phosphate metabolis
The Muonium Atom as a Probe of Physics beyond the Standard Model
The observed interactions between particles are not fully explained in the
successful theoretical description of the standard model to date. Due to the
close confinement of the bound state muonium () can be used as
an ideal probe of quantum electrodynamics and weak interaction and also for a
search for additional interactions between leptons. Of special interest is the
lepton number violating process of sponteanous conversion of muonium to
antimuonium.Comment: 15 pages,6 figure
The long-time dynamics of two hydrodynamically-coupled swimming cells
Swimming micro-organisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively
different from that displayed by isolated cells. In the dilute limit where
fluid-mediated interactions can be treated rigorously, the long-time
hydrodynamics of a collection of cells result from interactions with many other
cells, and as such typically eludes an analytical approach. Here we consider
the only case where such problem can be treated rigorously analytically, namely
when the cells have spatially confined trajectories, such as the spermatozoa of
some marine invertebrates. We consider two spherical cells swimming, when
isolated, with arbitrary circular trajectories, and derive the long-time
kinematics of their relative locomotion. We show that in the dilute limit where
the cells are much further away than their size, and the size of their circular
motion, a separation of time scale occurs between a fast (intrinsic) swimming
time, and a slow time where hydrodynamic interactions lead to change in the
relative position and orientation of the swimmers. We perform a multiple-scale
analysis and derive the effective dynamical system - of dimension two -
describing the long-time behavior of the pair of cells. We show that the system
displays one type of equilibrium, and two types of rotational equilibrium, all
of which are found to be unstable. A detailed mathematical analysis of the
dynamical systems further allows us to show that only two cell-cell behaviors
are possible in the limit of , either the cells are attracted to
each other (possibly monotonically), or they are repelled (possibly
monotonically as well), which we confirm with numerical computations
Forced oscillations in a hydrodynamical accretion disk and QPOs
This is the second of a series of papers aimed to look for an explanation on
the generation of high frequency quasi-periodic oscillations (QPOs) in
accretion disks around neutron star, black hole, and white dwarf binaries. The
model is inspired by the general idea of a resonance mechanism in the accretion
disk oscillations as was already pointed out by Abramowicz & Klu{\'z}niak
(\cite{Abramowicz2001}). In a first paper (P\'etri \cite{Petri2005a}, paper I),
we showed that a rotating misaligned magnetic field of a neutron star gives
rise to some resonances close to the inner edge of the accretion disk. In this
second paper, we suggest that this process does also exist for an asymmetry in
the gravitational potential of the compact object. We prove that the same
physics applies, at least in the linear stage of the response to the
disturbance in the system. This kind of asymmetry is well suited for neutron
stars or white dwarfs possessing an inhomogeneous interior allowing for a
deviation from a perfectly spherically symmetric gravitational field. We show
by a linear analysis that the disk initially in a cylindrically symmetric
stationary state is subject to three kinds of resonances: a corotation
resonance, a Lindblad resonance due to a driven force and a parametric sonance.
The highest kHz QPOs are then interpreted as the orbital frequency of the disk
at locations where the response to the resonances are maximal. It is also found
that strong gravity is not required to excite the resonances.Comment: Accepte
- …