446 research outputs found
Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.
Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections.
The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope.
Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps
Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.
Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections.
The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope.
Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps
Anomalous rotational properties of Bose-Einstein condensates in asymmetric traps
We study the rotational properties of a Bose-Einstein condensate confined in
a rotating harmonic trap for different trap anisotropies. Using simple
arguments, we derive expressions for the velocity field of the quantum fluid
for condensates with or without vortices. While the condensed gas describes
open spiraling trajectories, on the frame of reference of the rotating trap the
motion of the fluid is against the trap rotation. We also find explicit
formulae for the angular momentum and a linear and Thomas-Fermi solutions for
the state without vortices. In these two limits we also find an analytic
relation between the shape of the cloud and the rotation speed. The predictions
are supported by numerical simulations of the mean field Gross-Pitaevskii
model.Comment: 4 RevTeX pages, 2 EPS figures; typos fixed, reference adde
The Nucleon-Nucleon Interaction in the Chromo-Dielectric Soliton Model: Dynamics
The present work is an extension of a previous study of the nucleon-nucleon
interaction based on the chromo-dielectric soliton model. The former approach
was static, leading to an adiabatic potential. Here we perform a dynamical
study in the framework of the Generator Coordinate Method. In practice, we
derive an approximate Hill-Wheeler differential equation and obtain a local
nucleon-nucleon potential as a function of a mean generator coordinate. This
coordinate is related to an effective separation distance between the two
nucleons by a Fujiwara transformation. This latter relationship is especially
useful in studying the quark substructure of light nuclei. We investigate the
explicit contribution of the one-gluon exchange part of the six-quark
Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are
responsible for a significant part of the short-range N-N repulsion.Comment: 16 pages (REVTEX), 6 figures (uuencoded Postscript) optionally
included using epsfig.st
The stellar mass ratio of GK Persei
We study the absorption lines present in the spectra of the long-period
cataclysmic variable GK Per during its quiescent state, which are associated
with the secondary star. By comparing quiescent data with outburst spectra we
infer that the donor star appears identical during the two states and the inner
face of the secondary star is not noticeably irradiated by flux from the
accreting regions. We obtain new values for the radial velocity semi-amplitude
of the secondary star, Kk = 120.5 +- 0.7 km/s, a projected rotational velocity,
Vksin i = 61.5 +- 11.8 km/s and consequently a measurement of the stellar mass
ratio of GK Per, q = Mk/Mwd = 0.55 +- 0.21. The inferred white dwarf radial
velocities are greater than those measured traditionally using the wings of
Doppler-broadened emission lines suspected to originate in an accretion disk,
highlighting the unsuitability of emission lines for mass determinations in
cataclysmic variables. We determine mass limits for both components in the
binary, Mk >= 0.48 +- 0.32 Msolar and Mwd >= 0.87 +- 0.24 Msolar.Comment: 8 pages, 8 figures, accepted by MNRA
Adiabatic Output Coupling of a Bose Gas at Finite Temperatures
We develop a general theory of adiabatic output coupling from trapped atomic
Bose-Einstein Condensates at finite temperatures. For weak coupling, the output
rate from the condensate, and the excited levels in the trap, settles in a time
proportional to the inverse of the spectral width of the coupling to the output
modes. We discuss the properties of the output atoms in the quasi-steady-state
where the population in the trap is not appreciably depleted. We show how the
composition of the output beam, containing condensate and thermal component,
may be controlled by changing the frequency of the output coupler. This
composition determines the first and second order coherence of the output beam.
We discuss the changes in the composition of the bose gas left in the trap and
show how nonresonant output coupling can stimulate either the evaporation of
thermal excitations in the trap or the growth of non-thermal excitations, when
pairs of correlated atoms leave the condensate.Comment: 22 pages, 6 Figs. To appear in Physical Review A All the typos from
the previous submission have been fixe
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
- âŠ