1,707 research outputs found
An approach to context in human-computer communication
A comprehensive framework is presented for the analysis or description of context in relation to human-computer communication, in a manner that is also consistent with the contextual analysis of interpersonal communication among humans. Following a discussion of the nature of context, a hierarchically structured framework is proposed, which distinguishes between those contextual factors that are intrinsic to the communication process and those extrinsic factors that are classed as situational. Both of these overall classes are subdivided into broader and narrower categories, and the situational context is additionally analyzed in terms of physical and socio-cultural factors. Cognitive aspects of context are also included within the treatment, while allowing for the differences that exist between human and computer-based representations. Finally, the application of the framework to various aspects of human-computer communication is discussed, with a view to the resolution of attendant problems
Diffraction of a released bose-einstein condensate by a pulsed standing light wave
We study the diffraction of a released sodium Bose-Einstein condensate by a pulsed standing light wave. The width of the momentum distribution of the diffracted atoms exhibits strong oscillations as a function of the pulse duration, corresponding to periodic focusing and collimation of the condensate inside the standing light wave. Applications of this thick grating regime of diffraction to atom interferometry are discussed
Cartan subalgebras in C*-algebras of Hausdorff etale groupoids
The reduced -algebra of the interior of the isotropy in any Hausdorff
\'etale groupoid embeds as a -subalgebra of the reduced
-algebra of . We prove that the set of pure states of with unique
extension is dense, and deduce that any representation of the reduced
-algebra of that is injective on is faithful. We prove that there
is a conditional expectation from the reduced -algebra of onto if
and only if the interior of the isotropy in is closed. Using this, we prove
that when the interior of the isotropy is abelian and closed, is a Cartan
subalgebra. We prove that for a large class of groupoids with abelian
isotropy---including all Deaconu--Renault groupoids associated to discrete
abelian groups--- is a maximal abelian subalgebra. In the specific case of
-graph groupoids, we deduce that is always maximal abelian, but show by
example that it is not always Cartan.Comment: 14 pages. v2: Theorem 3.1 in v1 incorrect (thanks to A. Kumjain for
pointing out the error); v2 shows there is a conditional expectation onto
iff the interior of the isotropy is closed. v3: Material (including some
theorem statements) rearranged and shortened. Lemma~3.5 of v2 removed. This
version published in Integral Equations and Operator Theor
Latest results on Jovian disk X-rays from XMM-Newton
We present the results of a spectral study of the soft X-ray emission
(0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were
obtained during two observing campaigns with XMM-Newton in April and November
2003. While the level of the emission remained approximately the same between
April and the first half of the November observation, the second part of the
latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very
similar, and apparently correlated increase, in time and scale, was observed in
the solar X-ray and EUV flux.
The months of October and November 2003 saw a period of particularly intense
solar activity, which appears reflected in the behaviour of the soft X-rays
from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras,
are all well fitted by a coronal model with temperatures in the range 0.4-0.5
keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86
keV): these are characteristic lines of solar X-ray spectra at maximum activity
and during flares.
The XMM-Newton observations lend further support to the theory that Jupiter's
disk X-ray emission is controlled by the Sun, and may be produced in large part
by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere
of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of
Planetary and Space Scienc
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
Characterisation of a three-dimensional Brownian motor in optical lattices
We present here a detailed study of the behaviour of a three dimensional
Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et
al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and
numerical simulations of a Brownian particle. The potentials used are spatially
and temporally symmetric, but combined spatiotemporal symmetry is broken by
phase shifts and asymmetric transfer rates between potentials. The diffusion of
atoms in the optical lattices is rectified and controlled both in direction and
speed along three dimensions. We explore a large range of experimental
parameters, where irradiances and detunings of the optical lattice lights are
varied within the dissipative regime. Induced drift velocities in the order of
one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure
Existence of superposition solutions for pulse propagation in nonlinear resonant media
Existence of self-similar, superposed pulse-train solutions of the nonlinear,
coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the
oscillator strengths of the transitions, is established. Some of these
excitations are specific to the resonant media, with energy levels in the
configurations of and and arise because of the interference
effects of cnoidal waves, as evidenced from some recently discovered identities
involving the Jacobian elliptic functions. Interestingly, these excitations
also admit a dual interpretation as single pulse-trains, with widely different
amplitudes, which can lead to substantially different field intensities and
population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde
From Storage and Retrieval of Pulses to Adiabatons
We investigate whether it is possible to store and retrieve the intense probe
pulse from a -type homogeneous medium of cold atoms. Through numerical
simulations we show that it is possible to store and retrieve the probe pulse
which are not necessarily weak. As the intensity of the probe pulse increases,
the retrieved pulse remains a replica of the original pulse, however there is
overall broadening and loss of the intensity. These effects can be understood
in terms of the dependence of absorption on the intensity of the probe. We
include the dynamics of the control field, which becomes especially important
as the intensity of the probe pulse increases. We use the theory of adiabatons
[Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the
storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe
- …