1,814 research outputs found

    FSEM: Functional Structural Equation Models for Twin Functional Data

    Get PDF
    The aim of this article is to develop a novel class of functional structural equation models (FSEMs) for dissecting functional genetic and environmental effects on twin functional data, while characterizing the varying association between functional data and covariates of interest. We propose a three-stage estimation procedure to estimate varying coefficient functions for various covariates (e.g., gender) as well as three covariance operators for the genetic and environmental effects. We develop an inference procedure based on weighted likelihood ratio statistics to test the genetic/environmental effect at either a fixed location or a compact region. We also systematically carry out the theoretical analysis of the estimated varying functions, the weighted likelihood ratio statistics, and the estimated covariance operators. We conduct extensive Monte Carlo simulations to examine the finite-sample performance of the estimation and inference procedures. We apply the proposed FSEM to quantify the degree of genetic and environmental effects on twin white matter tracts obtained from the UNC early brain development study. Supplementary materials for this article are available online

    MHV Lagrangian for N=4 Super Yang-Mills

    Full text link
    Here we formulate two field redefinitions for N=4 Super Yang-Mills in light cone superspace that generates only MHV vertices in the new Lagrangian. After careful consideration of the S-matrix equivalence theorem, we see that only the canonical transformation gives the MHV Lagrangian that would correspond to the CSW expansion. Being in superspace, it is easier to analyse the equivalence theorem at loop level. We calculate the on shell amplitude for 4pt (ΛˉAˉΛA)(\bar{\Lambda}\bar{{\rm A}}\Lambda {\rm A}) MHV in the new lagrangian and show that it reproduces the previously known form. We also briefly discuss the relationship with the off-shell continuation prescription of CSW.Comment: 17 pages 4 figures, 2 sections and several references added typo correcte

    Coverage of harm reduction services and HIV infection: A multilevel analysis of five Chinese cities

    Get PDF
    __Background:__ Since 2003, a harm reduction program for injecting drug users has been rolled out countrywide in China. It entails services for condom promotion, a needle and syringe program (NSP), and methadone maintenance treatment (MMT). However, it remains unknown if and to what extent the coverage of these services at city level is related to a reduced risk of HIV infection among drug users. __Methods:__ We wished to quantify the extent to which city-level characteristics (such as NSP and MMT service coverage) and individual-level determinants (e.g., self-reported exposure to NSP and MMT services, knowledge, motivation, and skills) were associated with the risk of HIV infection among drug users. In 2006, we conducted an integrated serological and behavioral survey among drug users in five cities of Yunnan Province, China (N = 685), constructing a multilevel logistic regression model with drug users clustered within these cities. __Results:__ Drug users who reported having received NSP or MMT services were about 50% less likely to be infected with HIV than those who reported not having received them (OR 0.45, 95% CI, 0.26-0.83 for NSP and 0.48, 95% CI, 0.31-0.73 for MMT). Despite a between-city variation of HIV infection risk (ICC 0.24, 95% CI 0.08-0.54), none of the city-level factors could explain this difference. Individual-level determinants such as perceived risk of infection and use of condoms were not associated with HIV infection. __Conclusions:__ Although people who had used NSP or MMT services were less likely to be HIV infected, this study found no relationship between city-level coverage of HIV prevention programs and variations in HIV infection between cities. This may have been due to the low number of cities in the analysis. Future research should include the analysis of data from a larger number of cities, which are collected widely in China through integrated behavioral and serological surveys

    First principle study of intrinsic defects in hexagonal tungsten carbide

    Full text link
    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in WC. Our calculation results confirm that the formation energies of carbon defects are much lower than that of tungsten defects. The outward relaxations around vacancy are found. Both interstitial carbon and interstitial tungsten atom prefer to occupy the carbon basal plane projection of octahedral interstitial site. The results of isolated carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerable lower activation energy. These results provide evidence for the presumption that the 800K stage is attributed by the annealing out of carbon vacancies by long-range migration.Comment: Submitted to Journal of Nuclear Material

    Thermodynamic perturbation theory for dipolar superparamagnets

    Full text link
    Thermodynamic perturbation theory is employed to derive analytical expressions for the equilibrium linear susceptibility and specific heat of lattices of anisotropic classical spins weakly coupled by the dipole-dipole interaction. The calculation is carried out to the second order in the coupling constant over the temperature, while the single-spin anisotropy is treated exactly. The temperature range of applicability of the results is, for weak anisotropy (A/kT << 1), similar to that of ordinary high-temperature expansions, but for moderately and strongly anisotropic spins (A/kT > 1) it can extend down to the temperatures where the superparamagnetic blocking takes place (A/kT \sim 25), provided only the interaction strength is weak enough. Besides, taking exactly the anisotropy into account, the results describe as particular cases the effects of the interactions on isotropic (A = 0) as well as strongly anisotropic (A \to \infty) systems (discrete orientation model and plane rotators).Comment: 15 pages, 3 figure

    Bergman Kernel from Path Integral

    Full text link
    We rederive the expansion of the Bergman kernel on Kahler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation theory, and generalize it to supersymmetric quantum mechanics. One physics interpretation of this result is as an expansion of the projector of wave functions on the lowest Landau level, in the special case that the magnetic field is proportional to the Kahler form. This is relevant for the quantum Hall effect in curved space, and for its higher dimensional generalizations. Other applications include the theory of coherent states, the study of balanced metrics, noncommutative field theory, and a conjecture on metrics in black hole backgrounds. We give a short overview of these various topics. From a conceptual point of view, this expansion is noteworthy as it is a geometric expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time expansion for the heat kernel, but in this case describing the long time limit, without depending on supersymmetry.Comment: 27 page

    The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance

    Full text link
    The current uncertainty in Newton's constant, G_N, is of the order of 0.15%. For values of the baryon to photon ratio consistent with both cosmic microwave background observations and the primordial deuterium abundance, this uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the effect from the current uncertainty in the neutron lifetime, which is often treated as the dominant uncertainty in calculations of Y_P. Recent measurements of G_N seem to be converging within a smaller range; a reduction in the estimated error on G_N by a factor of 10 would essentially eliminate it as a source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.

    IBM-1 description of the fission products 108,110,112^{108,110,112}Ru

    Get PDF
    IBM-1} calculations for the fission products 108,110,112^{108,110,112}Ru have been carried out. The even-even isotopes of Ru can be described as transitional nuclei situated between the U(5) (spherical vibrator) and SO(6) (γ\gamma-unstable rotor) symmetries of the Interacting Boson Model. At first, a Hamiltonian with only one- and two-body terms has been used. Excitation energies and BB(E2) ratios of gamma transitions have been calculated. A satisfactory agreement has been obtained, with the exception of the odd-even staggering in the quasi-γ\gamma bands of 110,112^{110,112}Ru. The observed pattern is rather similar to the one for a rigid triaxial rotor. A calculation based on a Hamiltonian with three-body terms was able to remove this discrepancy. The relation between the IBM and the triaxial rotor model was also examined.Comment: 22 pages, 8 figure
    corecore