62 research outputs found

    Fluctuation-Induced Interactions between Rods on a Membrane

    Full text link
    We consider the interaction between two rods embedded in a fluctuating surface. The modification of fluctuations by the rods leads to an attractive long-range interaction between them. We consider fluctuations governed by either surface tension (films) or bending rigidity (membranes). In both cases the interaction falls off with the separation of the rods as 1/R41/R^4. The orientational part of the interaction is proportional to cos2[θ1+θ2]\cos^2\left[ \theta_1+\theta_2 \right] in the former case, and to cos2[2(θ1+θ2)]\cos^2\left[ 2\left(\theta_1+\theta_2\right) \right] in the latter, where θ1\theta_1 and θ2\theta_2 are angles between the rods and the line joining them. These interactions are somewhat reminiscent of dipolar forces and will tend to align collections of such rods into chains.Comment: REVTEX, 14 pages, with 2 Postscript figure

    Kinetic study of the reaction of leuco methylene blue with 2,6-dimethyl-p-benzoquinone in a reverse micellar system

    Get PDF
    The kinetics of the reaction of leuco methylene blue (MBH) with 2,6-dimethyl-p-benzoquinone (DMBQ) were studied in a heptane/bis(2-ethylhexyl)-sulfosuccinate (AOT)/water reverse micellar system. The pseudo-first-order rate constant (k (obsd)) obtained in the presence of excess of DMBQ was found to be proportional to the initial concentration of DMBQ for W (0)=3, 5, 10, 15 and 20 (W (0)=[H2O]/[AOT]). The second-order rate constant (k (2)=k (obsd)/[DMBQ](0)) increased with an increase in the W (0) value, but was almost independent of the concentration of the water pool. A mechanism involving the distribution of DMBQ between the reverse micellar interface and bulk organic solvent was proposed to explain these findings.</p

    Magnesium Porphyrin Sensitized Reduction of Viologen Sulfonate in Reverse Micelles

    No full text
    corecore