3 research outputs found

    EPR dosimetry in chemically treated fingernails

    No full text
    By using EPR measurements of radiation-induced radicals it is possible to utilize human fingernails to estimate radiation dose after-the-fact. One of the potentially limiting factors in this approach is the presence of artifacts due to mechanically induced EPR signals (MIS) caused by mechanical stress during the collection and preparation of the samples and the so-called background (non-radiation) signal (BKS). The MIS and BKS have spectral parameters (shape, g-factor and linewidth) that overlap with the radiation-induced signal (RIS) and therefore, if not taken into account properly, could result in a considerable overestimation of the dose. We have investigated the use of different treatments of fingernails with chemical reagents to reduce the MIS and BKS. The most promising chemical treatment (20 min with 0.1 M dithiothreitol aqueous solution) reduced the contribution of MIS and BKS to the total intensity of EPR signal of irradiated fingernails by a factor of 10. This makes it potentially feasible to measure doses as low as 1 Gy almost immediately after irradiation. However, the chemical treatment reduces the intensity of the RIS and modifies dose dependence. This can be compensated by use of an appropriate calibration curve for assessment of dose. On the basis of obtained results it appears feasible to develop a field-deployable protocol that could use EPR measurements of samples of fingernails to assist in the triage of individuals with potential exposure to clinically significant doses of radiation. © 2007 Elsevier Ltd. All rights reserved
    corecore