848 research outputs found
Comment on "Foundations of quantum mechanics: Connection with stochastic processes"
Recently, Olavo has proposed several derivations of the Schrodinger equation
from different sets of hypothesis ("axiomatizations") [Phys. Rev. A 61, 052109
(2000)]. One of them is based on the infinitesimal inverse Weyl transform of a
classically evolved phase space density. We show however that the Schrodinger
equation can only be obtained in that manner for linear or quadratic potential
functions.Comment: 3 pages, no figure
226Ra, 228Ra and 40K as tracers of erosion and accumulation processes: A 3-year study on a beach with different sediment dynamics
The aim of this study is to analyse the role of natural radionuclides 226Ra, 228Ra, 40K and unsupported 210Pb (210Pbex), as erosion and accumulation process tracers. For this purpose, a complex system, including both the characteristic dynamics of a closed beach and those associated with a beach open to wave action, was studied. A 3-year study of monthly variation of 226Ra, 228Ra, 40K and 210Pbex was carried out at Las Canteras beach, on the Island of Gran Canaria (Spain), covering several erosion and accumulation periods. A correlation analysis, ANOVA test and Tukey’s Honestly Significant Difference (HSD) Test proved that the marine erosion and accumulation agents influenced the activity concentration values found for the different radionuclides. Moreover, the geochemical analysis of samples from maximum and minimum activity concentration values showed that the natural radionuclides studied could be suitable tracers for studying beach sediment dynamics in erosion and accumulation periods
The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05
Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0
Influencia de la fertirrigación con agua regenerada y las labores de mantenimiento en la uniformidad de riego
El objetivo del trabajo ha sido estudiar el efecto de la fertirrigación y las labores de
mantenimiento en la uniformidad de distribución de caudal utilizando agua urbana
regenerada. El ensayo se desarrolló en un invernadero experimental en el Centro IFAPA La
Mojonera en La Cañada (Almería). Se estableció un diseño experimental factorial con dos
factores, manejo del riego y tipo de emisor. En lo que respecta al factor manejo de riego se
dispusieron tres tratamientos, AR-Riego con agua residual urbana regenerada; ARFRFertirriego
con agua residual urbana regenerada+equilibrio fertilizante estándar y ARFRMFertirriego
con agua residual urbana regenerada+equilibrio fertilizante estándar
+mantenimiento. En el factor tipo de emisor, se evaluaron 20 modelos comerciales de
goteros seleccionados en estudios previos de diferentes tipologías. Se determinó el
coeficiente de uniformidad de caudal y el porcentaje de obturación a las 0, 40, 60, 80 y 100 h
de funcionamiento. De los resultados obtenidos se puede concluir que el tratamiento de
riego afectó al porcentaje de obturación, siendo mayor en los tratamientos fertirrigados. Las
labores de mantenimiento predefinidas mejoraron la uniformidad pero no resultaron eficaces
para evitar la obturación, por lo que sería necesario redefinir las labores de mantenimiento
más adecuadas a este tipo de agua
A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile
Air quality time series consists of complex linear and non-linear patterns and are difficult to forecast. Box-Jenkins Time Series (ARIMA) and multilinear regression (MLR) models have been applied to air quality forecasting in urban areas, but they have limited accuracy owing to their inability to predict extreme events. Artificial neural networks (ANN) can recognize non-linear patterns that include extremes. A novel hybrid model combining ARIMA and ANN to improve forecast accuracy for an area with limited air quality and meteorological data was applied to Temuco, Chile, where residential wood burning is a major pollution source during cold winters, using surface meteorological and PM10 measurements. Experimental results indicated that the hybrid model can be an effective tool to improve the PM10 forecasting accuracy obtained by either of the models used separately, and compared with a deterministic MLR. The hybrid model was able to capture 100% and 80% of alert and pre-emergency episodes, respectively. This approach demonstrates the potential to be applied to air quality forecasting in other cities and countries
Thermal impact from a thermoelectric power plant on a tropical coastal lagoon
Tropical coastal areas are sensitive ecosystems to climate change, mainly due to sea level rise and increasing water temperatures. Furthermore, they may be subject to numerous stresses, including heat releases from energy production. The Urias coastal lagoon (SE Gulf of California), a subtropical tidal estuary, receives cooling water releases from a thermoelectric power plant, urban and industrial wastes, and shrimp farm discharges. In order to evaluate the plant thermal impact, we measured synchronous temperature time series close to and far from the plant. Furthermore, in order to discriminate the thermal pollution impact from natural variability, we used a high-resolution hydrodynamic model forced by, amongst others, cooling water release as a continuous flow (7.78 m3 s?1) at 6 °C overheating temperature. Model results and field data indicated that the main thermal impact was temporally restricted to the warmest months, spatially restricted to the surface layers (above 0.6 m) and distributed along the shoreline within ?100 m of the release point. The methodology and results of this study can be extrapolated to tropical coastal lagoons that receive heat discharges.<br/
Nonextensive thermodynamic functions in the Schrödinger-Gibbs ensemble
© 2015 American Physical Society. Schrödinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schrödinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions and prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy, or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schrödinger's idea cannot be used to construct an appropriate quantum equilibrium thermodynamics.Peer Reviewe
Quantum Communication Protocol Employing Weak Measurements
We propose a communication protocol exploiting correlations between two
events with a definite time-ordering: a) the outcome of a {\em weak
measurement} on a spin, and b) the outcome of a subsequent ordinary measurement
on the spin. In our protocol, Alice, first generates a "code" by performing
weak measurements on a sample of N spins.
The sample is sent to Bob, who later performs a post-selection by measuring
the spin along either of two certain directions. The results of the
post-selection define the "key', which he then broadcasts publicly. Using both
her previously generated code and this key, Alice is able to infer the {\em
direction} chosen by Bob in the post-selection. Alternatively, if Alice
broadcasts publicly her code, Bob is able to infer from the code and the key
the direction chosen by Alice for her weak measurement. Two possible
experimental realizations of the protocols are briefly mentioned.Comment: 5 pages, Revtex, 1 figure. A second protocol is added, where by a
similar set of weak measurement Alice can send, instead of receiving, a
message to Bob. The security question for the latter protocol is discusse
Spin dependent observable effect for free particles using the arrival time distribution
The mean arrival time of free particles is computed using the quantum
probability current. This is uniquely determined in the non-relativistic limit
of Dirac equation, although the Schroedinger probability current has an
inherent non-uniqueness. Since the Dirac probability current involves a
spin-dependent term, an arrival time distribution based on the probability
current shows an observable spin-dependent effect, even for free particles.
This arises essentially from relativistic quantum dynamics, but persists even
in the non-relativistic regime.Comment: 5 Latex pages, 2.eps figures; discussions sharpened and references
added; accepted for publication in Physical Review
- …