130 research outputs found
Image resonance in the many-body density of states at a metal surface
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account
The Approach to Ergodicity in Monte Carlo Simulations
The approach to the ergodic limit in Monte Carlo simulations is studied using
both analytic and numerical methods. With the help of a stochastic model, a
metric is defined that enables the examination of a simulation in both the
ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies
how the simulation is expected to approach ergodic behavior analytically, and
the analytically inferred decay law of the metric allows the monitoring of the
onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the
comparison of the relative efficiencies of different Monte Carlo schemes.
Applications to Lennard-Jones 13-particle clusters are shown to match the model
for Metropolis, J-walking and parallel tempering based approaches. The relative
efficiencies of these three Monte Carlo approaches are compared, and the decay
law is shown to be useful in determining needed high temperature parameters in
parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure
Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins
Water and water-mediated interactions determine thermodynamic and kinetics of
protein folding, protein aggregation and self-assembly in confined spaces. To
obtain insights into the role of water in the context of folding problems, we
describe computer simulations of a few related model systems. The dynamics of
collapse of eicosane shows that upon expulsion of water the linear hydrocarbon
chain adopts an ordered helical hairpin structure with 1.5 turns. The structure
of dimer of eicosane molecules has two well ordered helical hairpins that are
stacked perpendicular to each other. As a prelude to studying folding in
confined spaces we used simulations to understand changes in hydrophobic and
ionic interactions in nano droplets. Solvation of hydrophobic and charged
species change drastically in nano water droplets. Hydrophobic species are
localized at the boundary. The tendency of ions to be at the boundary where
water density is low increases as the charge density decreases. Interaction
between hydrophobic, polar, and charged residue are also profoundly altered in
confined spaces. Using the results of computer simulations and accounting for
loss of chain entropy upon confinement we argue and then demonstrate, using
simulations in explicit water, that ordered states of generic amphiphilic
peptide sequences should be stabilized in cylindrical nanopores
Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)
Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates
at room temperature. Their electronic properties have been studied by using
angle resolved photoelectron spectroscopy (ARPES). In addition to the
electronic band dispersion along the high-symmetry directions, the Fermi
surface topology of the grown films has been investigated. Using ARPES, the
spectral weight distribution at the Fermi level throughout large portions of
the reciprocal space has been determined at particular perpendicular
electron-momentum values. Systematically, the contours of the Fermi surface of
these films reflected a sixfold symmetry instead of the threefold symmetry of
Ag single crystal. This loss of symmetry has been attributed to the fact that
these films appear to be composed by two sets of domains rotated 60 from
each other. Extra, photoemission features at the Fermi level were also
detected, which have been attributed to the presence of surface states and
\textit{sp}-quantum states. The dimensionality of the Fermi surface of these
films has been analyzed studying the dependence of the Fermi surface contours
with the incident photon energy. The behavior of these contours measured at
particular points along the Ag L high-symmetry direction puts forward
the three-dimensional character of the electronic structure of the films
investigated.Comment: 10 pages, 12 figures, submitted to Physical Review
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s
Multijet production rates in neutral current deep inelastic scattering have
been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2.
The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s)
= 318 GeV using the ZEUS detector and correspond to an integrated luminosity of
82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster
algorithm in the longitudinally invariant inclusive mode. Measurements of
differential dijet and trijet cross sections are presented as functions of jet
transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with
E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD
calculations describe the data well. The value of the strong coupling constant
alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections,
is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.)
{+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
Photoproduction of mesons associated with a leading neutron
The photoproduction of mesons associated with a leading
neutron has been observed with the ZEUS detector in collisions at HERA
using an integrated luminosity of 80 pb. The neutron carries a large
fraction, {}, of the incoming proton beam energy and is detected at
very small production angles, { mrad}, an indication of
peripheral scattering. The meson is centrally produced with
pseudorapidity {
GeV}, which is large compared to the average transverse momentum of the neutron
of 0.22 GeV. The ratio of neutron-tagged to inclusive production is
in the photon-proton
center-of-mass energy range { GeV}. The data suggest that the
presence of a hard scale enhances the fraction of events with a leading neutron
in the final state.Comment: 28 pages, 4 figures, 2 table
Measurement of beauty production in deep inelastic scattering at HERA
The beauty production cross section for deep inelastic scattering events with
at least one hard jet in the Breit frame together with a muon has been
measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA
using integrated luminosity of 72 pb^-1. The total visible cross section is
sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The
next-to-leading order QCD prediction lies about 2.5 standard deviations below
the data. The differential cross sections are in general consistent with the
NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon
transverse momentum, and high values of jet transverse energy and muon
pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
- …