1,130 research outputs found
Development and Evaluation of an Undergraduate Science Communication Module
This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the models surrounding science communication and investigate how the science culture interfaces with the public. During the module they learn how to adapt science concepts for different audiences and how to talk confidently about science to a lay-audience. Student motivation for module choice centres on the acquisition of transferable skills and students develop these skills through designing, running and evaluating a public outreach event at a school or in a public area. These transferable skills acquired include communication, interaction with different organisations such as museums and science centres, developing understanding of both the needs of different audiences and the importance of time management. They also develop skills relating to self-reflection and how to use this as a tool for future self development. The majority of students completing the module go on to further study, either a PhD, MSc or teacher training. The module can be sustained in its present formed if capped at 40 students, however it is recognised that to increase cohort size, further investment of faculty time and resources would be required
Measurement and modelling of moisture—electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy
A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content.
Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples.
However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances.
The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes.
Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman–Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The incorporation of pressure plate suction measurements on samples, allows suction dissipation to be quantified and evaluated alongside moisture content and electrical resistivity
Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants
Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering fNIRS and magnetic resonance imaging (MRI) data from 55 individuals. Our findings suggest that fNIRS channels can be reliably registered with regions in the frontal and temporal cortex of infants from 4 to 7 months of age. Although some macro-anatomical regions are difficult to consistently define, others are more stable and fNIRS channels on an age-appropriate MRI template are often consistent with individual infant MRIs. We have generated a standardized scalp surface map of fNIRS channel locators to reliably locate cortical regions for fNIRS developmental researchers. This new map can be used to identify the inferior frontal gyrus, superior temporal sulcus (STS) region [which includes the superior and middle temporal gyri (MTG) nearest to the STS], and MTG and temporal-parietal regions in 4- to 7-month-old infants. Future work will model data for the whole head, taking into account the properties of light transport in tissue, and expanding to different ages across development
Cannabis-related deficits in real-world memory
Background
Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning.
Method
Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM).
Results
Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales.
Conclusions
The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits
3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods
A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone
Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay
The quantum field theory of superluminal (tachyonic) particles is plagued
with a number of problems, which include the Lorentz non-invariance of the
vacuum state, the ambiguous separation of the field operator into creation and
annihilation operators under Lorentz transformations, and the necessity of a
complex reinterpretation principle for quantum processes. Another unsolved
question concerns the treatment of subluminal components of a tachyonic wave
packets in the field-theoretical formalism, and the calculation of the
time-ordered propagator. After a brief discussion on related problems, we
conclude that rather painful choices have to be made in order to incorporate
tachyonic spin-1/2 particles into field theory. We argue that the field theory
needs to be formulated such as to allow for localizable tachyonic particles,
even if that means that a slight unitarity violation is introduced into the S
matrix, and we write down field operators with unrestricted momenta. We find
that once these choices have been made, the propagator for the neutrino field
can be given in a compact form, and the left-handedness of the neutrino as well
as the right-handedness of the antineutrino follow naturally. Consequences for
neutrinoless double beta decay and superluminal propagation of neutrinos are
briefly discussed.Comment: 12 pages, 5 figure
Transverse emittance measurements on an S-band photoinjector rf electron gun
Proposed fourth generation light sources using SASE FELs to generate short
pulse, coherent, X-rays require demonstration of high brightness electron
sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness
sources for the proposed Linac Coherent Light Source at SLAC. The transverse
emittance measurements are made at nearly 30 MeV by measuring the spot size on
a YAG screen using the quadrupole scan technique. The emittance was measured to
vary from 1 to 3.5 mm-mrad as the charge is increased from 50 to 350 pC using a
laser pulse width of 2 ps FWHM. The measurements are in good agreement with
simulation results using the LANL version of PARMELA.Comment: 12 pages, 4 figures, contributed to The 23rd Int. FEL Conf.,
Darmstadt, 20-24 Aug. 200
Cannabis-related deficits in real-world memory
Background Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning. Method Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM). Results Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales. Conclusions The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits
Neutron background in large-scale xenon detectors for dark matter searches
Simulations of the neutron background for future large-scale particle dark
matter detectors are presented. Neutrons were generated in rock and detector
elements via spontaneous fission and (alpha,n) reactions, and by cosmic-ray
muons. The simulation techniques and results are discussed in the context of
the expected sensitivity of a generic liquid xenon dark matter detector.
Methods of neutron background suppression are investigated. A sensitivity of
pb to WIMP-nucleon interactions can be achieved by a
tonne-scale detector.Comment: 35 pages, 13 figures, 2 tables, accepted for publication in
Astroparticle Physic
- …