31 research outputs found

    Atmospheric Neutrino Problem in Maximally-Mixed Three Generations of Neutrinos

    Full text link
    Motivated by the indication that both the atmospheric and the solar neutrino puzzles may simultaneously be solved by (vacuum as well as matter-induced resonant) oscillations of two generations of neutrinos with large mixing, we have analyzed the data on the atmospheric and solar neutrinos assuming that all {\it three} neutrinos are maximally mixed. It is shown that the values of Δm2 \Delta m^2 obtained from the two-generation analyses are still valid even in the three-generation scheme, i.e. the two puzzles can be solved simultaneously if Δm312102eV2 \Delta m_{31}^2 \simeq 10^{-2} \, \mathrm{eV}^2 for the atmospheric neutrinos and Δm2121010eV2 \Delta m_{21}^2 \simeq 10^{-10} \, \mathrm{eV}^2 for solar neutrinos in the maximally mixed three-generation scheme.Comment: Revtex file, 11 pages + 3 figures (included). The postscript file of text and figures is available at ftp://toxd01.to.infn.it/pub/giunti/1994/dftt-54-94/dftt-54-94.ps.

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    corecore