136 research outputs found
Filamentary mass accretion towards the high-mass protobinary system G11.92-0.61 MM2
Funding: S.Z. is funded by the China Scholarship Council-University of St Andrews Scholarship (PhD programmes, No. 201806190010). C.J.C. acknowledges support from the University of St Andrews Restarting Research Funding Scheme (SARRF), which is funded through the SFC grant reference SFC/AN/08/020. J.D.H gratefully acknowledges financial support from the Royal Society (University Research Fellowship; URF\R1\2216.We present deep, sub-arcsecond (∼2000 AU) resolution ALMA 0.82 mm observations of the former high-mass prestellar core candidate G11.92-0.61 MM2, recently shown to be an ~500 AU-separation protobinary. Our observations show that G11.92-0.61 MM2, located in the G11.92-0.61 protocluster, lies on a filamentary structure traced by 0.82 mm continuum and N2H+(4-3) emission. The N2H+(4-3) spectra are multi-peaked, indicative of multiple velocity components along the line of sight. To analyse the gas kinematics, we performed pixel-by-pixel Gaussian decomposition of the N2H+$ spectra using SCOUSEPY and hierarchical clustering of the extracted velocity components using ACORNS. Seventy velocity- and position-coherent clusters (called "trees") are identified in the N2H+-emitting gas, with the 8 largest trees accounting for > 60 per cent of the fitted velocity components. The primary tree, with ~20 per cent of the fitted velocity components, displays a roughly north-south velocity gradient along the filamentary structure traced by the 0.82 mm continuum. Analysing a ~0.17 pc-long substructure, we interpret its velocity gradient of ~10.5 km s-1pc-1 as tracing filamentary accretion towards MM2 and estimate a mass inflow rate of ~1.8 × 10-4 to 1.2 × 10-3 M⊙ yr-1. Based on the recent detection of a bipolar molecular outflow associated with MM2, accretion onto the protobinary is ongoing, likely fed by the larger-scale filamentary accretion flows. If 50% of the filamentary inflow reaches the protostars, each member of the protobinary would attain a mass of 8 M⊙ within ~1.6 × 105 yr, comparable to the combined timescale of the 70-μm- and mid-infrared-weak phases derived for ATLASGAL-TOP100 massive clumps using chemical clocks.Peer reviewe
‘The Brick’ is not a brick: a comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. ‘the Brick’); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J = 4(0, 4) − 3(0, 3) data at 3 mm, using two new pieces of software that we make available to the community. First, SCOUSEPY, a Python implementation of the spectral line fitting algorithm SCOUSE. Secondly, ACORNS (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line-of-sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1 km s−1, which is somewhat larger than predicted by velocity dispersion-size relations for the central molecular zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D∼1.2±0.3. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling, we conclude that G0.253+0.016 is not a single, coherent, and centrally condensed molecular cloud; ‘the Brick’ is not a brick. Instead, G0.253+0.016 is a dynamically complex and hierarchically structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ
Star formation in 'the Brick': ALMA reveals an active protocluster in the Galactic centre cloud G0.253+0.016
Interstellar matter and star formatio
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Marketing the city of smells
This article explores how smell might contribute to urban identity, building on the strong links between smell, limbic processing and emotion. It critically examines existing scent marketing, psychology, and urban olfaction literatures, exploring the potential for the marketing of urban places through smell and capitalizing in particular on ambient smells that already exist within a locale. The article makes an initial threefold contribution to theory and practice: (i) demonstrating the current use of smell in city marketing, and the inherent challenges arising; (ii) identifying ways in which smell might be used in future urban place marketing activities, and in particular to more explicitly communicate the experiential attributes of being in a particular city; and (iii) proposing that olfaction may, in certain circumstances, be an effective way of incorporating a more participatory modus operandi within urban place marketing effort. The article concludes with a further overarching theoretical contribution, involving a consideration of place marketing that incorporates non-representational perspectives
Negative and positive feedback from a supernova remnant with SHREC: a detailed study of the shocked gas in IC443
Interstellar matter and star formatio
Star clusters near and far; tracing star formation across cosmic time
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio
PHANGS-ALMA data processing and pipeline
Instrumentatio
- …