638 research outputs found
Mindful Parenting, Parenting Cognitions, and Parent-Youth Communication: Bidirectional Linkages and Mediational Processes
Objectives: Mindful parenting and parenting cognitions likely have important linkages to each other and to parent-child communication, but these linkages have not been tested. In this article, we test the bidirectional linkages between mindful parenting and parenting cognitions (sense of competence, parent-centered attributions) and the underlying mediational processes that link them to parent-child communication (parental solicitation and youth disclosure). Methods: Longitudinal, autoregressive cross-lagged models were run within a longitudinal sample of rural and suburban early adolescents and their mothers (n = 421; mean adolescent age = 12.14, 46% male, 73% white). Results: Significant bidirectional linkages were found between mindful parenting and parenting cognitions across Time 1 and Time 2. Greater mindful parenting at Time 1 was associated with more positive parenting cognitions (e.g., greater perceptions of parental competence and fewer negative parent-centered attributions or self-blame) at Time 2. More positive parenting cognitions at Time 1 were also associated with greater levels of mindful parenting at Time 2. Mindful parenting at Time 2 mediated the association between parenting cognitions (both parent-centered attributions and sense of competence) at Time 1 and parental solicitation at Time 3. Conclusions: Mindful parenting and parenting cognitions influence each other over time. Parenting cognitions can affect parental solicitation via increases in mindful parenting. The discussion focuses on potential underlying processes
Gravity-Driven Acceleration of the Cosmic Expansion
It is shown here that a dynamical Planck mass can drive the scale factor of
the universe to accelerate. The negative pressure which drives the cosmic
acceleration is identified with the unusual kinetic energy density of the
Planck field. No potential nor cosmological constant is required. This suggests
a purely gravity driven, kinetic inflation. Although the possibility is not
ruled out, the burst of acceleration is often too weak to address the initial
condition problems of cosmology. To illustrate the kinetic acceleration, three
different cosmologies are presented. One such example, that of a bouncing
universe, demonstrates the additional feature of being nonsingular. The
acceleration is also considered in the conformally related Einstein frame in
which the Planck mass is constant.Comment: 23 pages, LaTex, figures available upon request, (revisions include
added references and comment on inflation) CITA-94-1
Quantum effects of a massive 3-form coupled to a Dirac field
We consider the coupling of A_{\mu\nu\rho} to the generic current of matter
field, later identified with the spin density current of a Dirac field. In
fact, one of the objectives of this paper is to investigate the impact of the
quantum fluctuations of A_{\mu\nu\rho} on the effective dynamics of the spinor
field. The consistency of the field equations, even at the classical level,
requires the introduction of a mass term for A_{\mu\nu\rho}. In this case, the
Casimir vacuum pressure includes a contribution that is explicitly dependent on
the mass of A_{\mu\nu\rho} and leads us to conclude that the mass term plays
the same role as the infrared cutoff needed to regularize the finite volume
partition functional previously calculated in the massless case. Remarkably,
even in the presence of a mass term, A_{\mu\nu\rho} contains a mixture of
massless and massive spin-0 fields so that the resulting equation is still
gauge invariant. This is yet another peculiar, but physically relevant property
of A_{\mu\nu\rho} since it is reflected in the effective dynamics of the spinor
fields and confirms the confining property of A_{\mu\nu\rho} already expected
from the earlier calculation of the Wilson loop.Comment: 10 pages, Revtex, no figures; in print on Phys.Rev.D; added new
reference
The Relativistic Factor in the Orbital Dynamics of Point Masses
There is a growing population of relativistically relevant minor bodies in
the Solar System and a growing population of massive extrasolar planets with
orbits very close to the central star where relativistic effects should have
some signature. Our purpose is to review how general relativity affects the
orbital dynamics of the planetary systems and to define a suitable relativistic
correction for Solar System orbital studies when only point masses are
considered. Using relativistic formulae for the N body problem suited for a
planetary system given in the literature we present a series of numerical
orbital integrations designed to test the relevance of the effects due to the
general theory of relativity in the case of our Solar System. Comparison
between different algorithms for accounting for the relativistic corrections
are performed. Relativistic effects generated by the Sun or by the central star
are the most relevant ones and produce evident modifications in the secular
dynamics of the inner Solar System. The Kozai mechanism, for example, is
modified due to the relativistic effects on the argument of the perihelion.
Relativistic effects generated by planets instead are of very low relevance but
detectable in numerical simulations
Matter degrees of freedom and string breaking in Abelian projected quenched SU(2) QCD
In the Abelian projection the Yang--Mills theory contains Abelian gauge
fields (diagonal degrees of freedom) and the Abelian matter fields
(off-diagonal degrees) described by a complicated action. The matter fields are
essential for the breaking of the adjoint string. We obtain numerically the
effective action of the Abelian gauge and the Abelian matter fields in quenched
SU(2) QCD and show that the Abelian matter fields provide an essential
contribution to the total action even in the infrared region. We also observe
the breaking of an Abelian analog of the adjoint string using Abelian
operators. We show that the adjoint string tension is dominated by the Abelian
and the monopole contributions similarly to the case of the fundamental
particles. We conclude that the adjoint string breaking can successfully be
described in the Abelian projection formalism.Comment: 16 pages, 10 figures, 2 table
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab
This white paper summarizes the scientific opportunities for utilization of
the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and
associated experimental equipment at Jefferson Lab. It is based on the 52
proposals recommended for approval by the Jefferson Lab Program Advisory
Committee.The upgraded facility will enable a new experimental program with
substantial discovery potential to address important topics in nuclear,
hadronic, and electroweak physics.Comment: 64 page
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
- …