1,955 research outputs found
General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions
The solutions of the Einstein-Maxwell-Chern-Simons theory are studied in
(1+2) dimensions with the self-duality condition imposed on the Maxwell field.
We give a closed form of the general solution which is determined by a single
function having the physical meaning of the quasilocal angular momentum of the
solution. This function completely determines the geometry of spacetime, also
providing the direct computation of the conserved total mass and angular
momentum of the configurations.Comment: 3 pages, REVTEX file, no figure
Entropy for Asymptotically AdS_3 Black Holes
We propose that Strominger's method to derive the BTZ black hole entropy is
in fact applicable to other asymptotically AdS_3 black holes and gives the
correct functional form of entropies. We discuss various solutions in the
Einstein-Maxwell theory, dilaton gravity, Einstein-scalar theories, and
Einstein-Maxwell-dilaton theory. In some cases, solutions approach AdS_3
asymptotically, but their entropies do not have the form of Cardy's formula.
However, it turns out that they are actually not "asymptotically "
solutions. On the other hand, for truly asymptotically AdS_3 solutions, their
entropies have the form of Cardy's formula. In this sense, all known solutions
are consistent with our proposal.Comment: 21 pages, LaTeX; v2: added discussion for section 3.
New solutions in 3D gravity
We study gravitational theory in 1+2 spacetime dimensions which is determined
by the Lagrangian constructed as a sum of the Einstein-Hilbert term plus the
two (translational and rotational) gravitational Chern-Simons terms. When the
corresponding coupling constants vanish, we are left with the purely Einstein
theory of gravity. We obtain new exact solutions for the gravitational field
equations with the nontrivial material sources. Special attention is paid to
plane-fronted gravitational waves (in case of the Maxwell field source) and to
the circularly symmetric as well as the anisotropic cosmological solutions
which arise for the ideal fluid matter source.Comment: Revtex, 21 pages, no figure
Supernovae and Positron Annihilation
Radioactive nuclei, especially those created in SN explosion, have long been
suggested to be important contributors of galactic positrons. In this paper we
describe the findings of three independent OSSE/SMM/TGRS studies of positron
annihilation radiation, demonstrating that the three studies are largely in
agreement as to the distribution of galactic annihilation radiation. We then
assess the predicted yields and distributions of SN-synthesized radionuclei,
determining that they are marginally compatible with the findings of the
annihilation radiation studies.Comment: 7 pages, accepted for publication in New Astronomy Reviews (Astronomy
with Radioactivites III
Advanced Compton Telescope Designs and SN Science
The Advanced Compton Telescope (ACT) has been suggested to be the optimal
next-generation instrument to study nuclear gamma-ray lines. In this work, we
investigate the potential of three hypothetical designs of the ACT to perform
SN science. We provide estimates of 1) the SN detection rate, 2) the SN Ia
discrimination rate, and 3) which gamma-ray lines would be detected from
specific supernova remnants. We find that the prompt emission from a SN Ia is
such that it is unlikely that one would be within the range that an
INTERMEDIATE ACT would be able to distinguish between explosion scenarios,
although such an instrument would detect a handful of SNRs.
We further find that the SUPERIOR ACT design would be a truly breakthrough
instrument for SN science. By supplying these estimates, we intend to assist
the gamma-ray astrophysics community in deciding the course of the next decade
of gamma-ray SN science.Comment: 10 pages, accepted for publication in New astronomy Reviews
(Astronomy with Radioactivities III
Interior Structure of a Charged Spinning Black Hole in -Dimensions
The phenomenon of mass inflation is shown to occur for a rotating black hole.
We demonstrate this feature in dimensions by extending the charged
spinning BTZ black hole to Vaidya form. We find that the mass function diverges
in a manner quantitatively similar to its static counterparts in ,
and dimensions.Comment: 5 pages, 2 figures (appended as postscript files), WATPHYS-TH94/0
Global embeddings of scalar-tensor theories in (2+1)-dimensions
We obtain (3+3)- or (3+2)-dimensional global flat embeddings of four
uncharged and charged scalar-tensor theories with the parameters B or L in the
(2+1)-dimensions, which are the non-trivially modified versions of the
Banados-Teitelboim-Zanelli (BTZ) black holes. The limiting cases B=0 or L=0
exactly are reduced to the Global Embedding Minkowski Space (GEMS) solution of
the BTZ black holes.Comment: 19 pages, 2 figure
Prepotential and Instanton Corrections in N=2 Supersymmetric SU(N_1)xSU(N_2) Yang Mills Theories
In this paper we analyse the non-hyperelliptic Seiberg-Witten curves derived
from M-theory that encode the low energy solution of N=2 supersymmetric
theories with product gauge groups. We consider the case of a SU(N_1)xSU(N_2)
gauge theory with a hypermultiplet in the bifundamental representation together
with matter in the fundamental representations of SU(N_1) and SU(N_2). By means
of the Riemann bilinear relations that hold on the Riemann surface defined by
the Seiberg--Witten curve, we compute the logarithmic derivative of the
prepotential with respect to the quantum scales of both gauge groups. As an
application we develop a method to compute recursively the instanton
corrections to the prepotential in a straightforward way. We present explicit
formulas for up to third order on both quantum scales. Furthermore, we extend
those results to SU(N) gauge theories with a matter hypermultiplet in the
symmetric and antisymmetric representation. We also present some non-trivial
checks of our results.Comment: 21 pages, 2 figures, minor changes and references adde
Implementation of bowel ultrasound practice for the diagnosis and management of necrotising enterocolitis.
Necrotising enterocolitis (NEC) is a serious inflammatory bowel disease of prematurity with potentially devastating complications and remains a leading cause of morbidity and mortality among premature infants. In recent years, there has been accumulating data regarding benefits of using bowel ultrasound (BUS) in the diagnosis and management of NEC. Despite this, adoption of robust BUS programmes into clinical practice has been slow. As BUS is a relatively new technique, many barriers to implementation exist, namely lack of education and training for sonographers and radiologists, low case volume and unfamiliarity by clinicians regarding how to use the information provided. The aim of this manuscript is to provide a framework and a roadmap for units to implement BUS in day-to-day practice for NEC diagnosis and management
Singularity-free cosmological solutions in quadratic gravity
We study a general field theory of a scalar field coupled to gravity through
a quadratic Gauss-Bonnet term . The coupling function has
the form , where is a positive integer. In the absence of
the Gauss-Bonnet term, the cosmological solutions for an empty universe and a
universe dominated by the energy-momentum tensor of a scalar field are always
characterized by the occurrence of a true cosmological singularity. By
employing analytical and numerical methods, we show that, in the presence of
the quadratic Gauss-Bonnet term, for the dual case of even , the set of
solutions of the classical equations of motion in a curved FRW background
includes singularity-free cosmological solutions. The singular solutions are
shown to be confined in a part of the phase space of the theory allowing the
non-singular solutions to fill the rest of the space. We conjecture that the
same theory with a general coupling function that satisfies certain criteria
may lead to non-singular cosmological solutions.Comment: Latex, 25 pages, 6 figures, some explanatory sentences and Comments
added, version to appear in Physical Review
- …