7,596 research outputs found

    Variation Tendency of TC Activity in the NWP

    Get PDF
    AbstractBased on the tropical cyclone dataset during 1945∼2013 by Joint Typhoon Warning Center (JTWC), this study has systematically analyzed the long-term variation of tropical cyclone (TC) in the Northwest Pacific (NWP). People recorded annual variations of Typhoon's maximal wind speed, power dissipation index (PDI) and frequency in this period. The results showed that these meteorology parameters display a rising trend, implying that the TC activity presents a feature of non-stationary stochastic processes. Geographically, we give spatial distribution of their historical maximal wind speed by combining database with parametric TC model. The results indicate that spatial distribution of TC intensity in the NWP is uneven and the sea area east to the Philippines is the most severely affected region by typhoon

    Development Of A Cathode Designing Method To Avoid Electrodes’ Interference During Blisk Electrochemical Machining

    Get PDF
    Electrochemical machining plays a prominent role in blisk (bladed integrated disk) construction process. Since blisk channel is narrow and twisted, interference between electrodes may happen during electrochemical machining. Therefore, this paper develops a cathode designing method to avoid interference. Firstly, according to theory of electrochemical machining, machined channel is predicted by calculation. Second, with this channel, interference analysis is carried out and a cathode is designed. Finally, the cathode is employed in experiment and no interference appears

    A self-consistent treatment of non-equilibrium spin torques in magnetic multilayers

    Full text link
    It is known that the transfer of spin angular momenta between current carriers and local moments occurs near the interface of magnetic layers when their moments are non-collinear. However, to determine the magnitude of the transfer, one should calculate the spin transport properties far beyond the interface regions. Based on the spin diffusion equation, we present a self-consistent approach to evaluate the spin torque for a number of layered structures. One of the salient features is that the longitudinal and transverse components of spin accumulations are inter-twined from one layer to the next, and thus, the spin torque could be significantly amplified with respect to treatments which concentrate solely on the transport at the interface due to the presence of the much longer longitudinal spin diffusion length. We conclude that bare spin currents do not properly estimate the spin angular momentum transferred between to the magnetic background; the spin transfer that occurs at interfaces should be self-consistently determined by embedding it in our globally diffuse transport calculations.Comment: 21 pages, 6 figure

    Layered hybrid phase Li2NaV2(PO4)3/carbon dot nanocomposite cathodes for Li+/Na+ mixed-ion batteries

    Get PDF
    Hybrid phase Li2NaV2(PO4)3 (H-LNVP) is one of the most promising cathode materials for Li+/Na+ mixed-ion batteries.</p

    Detuning effects in the one-photon mazer

    Full text link
    The quantum theory of the mazer in the non-resonant case (a detuning between the cavity mode and the atomic transition frequencies is present) is written. The generalization from the resonant case is far from being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity may slow down or speed up the atoms according to the sign of the detuning and that the induced emission process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a potential step effect not present at resonance and that the use of positive detunings defines a well-controlled cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the reflection and transmission coefficients have been obtained. The general properties of the induced emission probability are finally discussed in the hot, intermediate and cold atom regimes. Comparison with the resonant case is given.Comment: 9 pages, 8 figure

    QCD Factorized Drell-Yan Cross Section at Large Transverse Momentum

    Full text link
    We derive a new factorization formula in perturbative quantum chromodynamics for the Drell-Yan massive lepton-pair cross section as a function of the transverse momentum QTQ_T of the pair. When QTQ_T is much larger than the pair's invariant mass QQ, this factorization formula systematically resums the logarithmic contributions of the type αsmlnm(QT2/Q2)\alpha_s^m \ln^m(Q_T^2/Q^2) to all orders in the strong coupling αs\alpha_s. When QTQQ_T\sim Q, our formula yields the same Drell-Yan cross section as conventional fixed order QCD perturbation theory. We show that resummation is important when the collision energy S\sqrt{S} is large enough and QTQQ_T\gg Q, and we argue that perturbative expansions are more stable and reliable in terms of the modified factorization formula.Comment: 36 pages, latex, including 16 figure

    Open Heavy Flavor Production in Heavy Ion Collisions

    Full text link
    The interaction of heavy partons, charm and beauty, with the matter created in heavy ion collisions has been of great interest in recent years. Heavy partons were predicted to interact less strongly with the matter than light partons. In apparent contrast to these predictions, unexpectedly strong suppression of non-photonic electrons from heavy flavor decays has been seen. However, significant experimental uncertainties remain, both in the measurements themselves and in the separation of the contribution from charm and beauty, which have complicated the interpretation of these results. The current experimental situation is critically reviewed and prospects for making these measurements more easily interpretable discussed.Comment: 8 pages, 5 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee v2: typos correcte

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods
    corecore