12 research outputs found
A nonperturbative form of the spectral action principle in noncommutative geometry
Using the formalism of superconnections, we show the existence of a bosonic
action functional for the standard K-cycle in noncommutative geometry, giving
rise, through the spectral action principle, only to the Einstein gravity and
Standard Model Yang-Mills-Higgs terms. It provides an effective nonminimal
coupling in the bosonic sector of the Lagrangian.Comment: 12 pages. LaTeX2e, instructions for obsolete LaTeX'
COMMENTS ABOUT HIGGS FIELDS, NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL
We make a short review of the formalism that describes Higgs and Yang Mills
fields as two particular cases of an appropriate generalization of the notion
of connection. We also comment about the several variants of this formalism,
their interest, the relations with noncommutative geometry, the existence (or
lack of existence) of phenomenological predictions, the relation with Lie
super-algebras etc.Comment: pp 20, LaTeX file, no figures, also available via anonymous ftp at
ftp://cpt.univ-mrs.fr/ or via gopher gopher://cpt.univ-mrs.fr
Non-commutative multi-dimensional cosmology
A non-commutative multi-dimensional cosmological model is introduced and used
to address the issues of compactification and stabilization of extra dimensions
and the cosmological constant problem. We show that in such a scenario these
problems find natural solutions in a universe described by an increasing time
parameter.Comment: 9 pages, 1 figure, to appear in JHE
Quantum isometries and noncommutative spheres
We introduce and study two new examples of noncommutative spheres: the
half-liberated sphere, and the free sphere. Together with the usual sphere,
these two spheres have the property that the corresponding quantum isometry
group is "easy", in the representation theory sense. We present as well some
general comments on the axiomatization problem, and on the "untwisted" and
"non-easy" case.Comment: 16 page
Chiral spinors and gauge fields in noncommutative curved space-time
The fundamental concepts of Riemannian geometry, such as differential forms,
vielbein, metric, connection, torsion and curvature, are generalized in the
context of non-commutative geometry. This allows us to construct the
Einstein-Hilbert-Cartan terms, in addition to the bosonic and fermionic ones in
the Lagrangian of an action functional on non-commutative spaces. As an
example, and also as a prelude to the Standard Model that includes
gravitational interactions, we present a model of chiral spinor fields on a
curved two-sheeted space-time with two distinct abelian gauge fields. In this
model, the full spectrum of the generalized metric consists of pairs of tensor,
vector and scalar fields. They are coupled to the chiral fermions and the gauge
fields leading to possible parity violation effects triggered by gravity.Comment: 50 pages LaTeX, minor corrections and references adde
One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model
We compute at the one-loop order the beta-functions for a renormalisable
non-commutative analog of the Gross Neveu model defined on the Moyal plane. The
calculation is performed within the so called x-space formalism. We find that
this non-commutative field theory exhibits asymptotic freedom for any number of
colors. The beta-function for the non-commutative counterpart of the Thirring
model is found to be non vanishing.Comment: 16 pages, 9 figure
Vacuum configurations for renormalizable non-commutative scalar models
In this paper we find non-trivial vacuum states for the renormalizable
non-commutative model. An associated linear sigma model is then
considered. We further investigate the corresponding spontaneous symmetry
breaking.Comment: 17 page
Introduction to representations of the canonical commutation and anticommutation relations
Lecture notes of a minicourse given at the Summer School on Large Coulomb
Systems - QED in Nordfjordeid, 2003, devoted to representations of the CCR and
CAR. Quasifree states, the Araki-Woods and Araki-Wyss representations, and the
lattice of von Neumenn algebras in a bosonic/fermionic Fock space are discussed
in detail
The Stratonovich-Weyl correspondence A general approach to Wigner functions
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman