1,617 research outputs found
Space-time translational gauge identities in Abelian Yang-Mills gravity
We derive and calculate the space-time translational gauge identities in
quantum Yang-Mills gravity with a general class of gauge conditions involving
two arbitrary parameters. These identities of the Abelian group of translation
are a generalization of Ward-Takahasi-Fradkin identities and important for
general discussions of possible renormalization of Yang-Mills gravity with
translational gauge symmetry. The gauge identities in Yang-Mills gravity with a
general class of gauge conditions are substantiated by explicit calculations.Comment: 15 pages. To be published in The European Physical Journal - Plus
(2012
The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells
Dental pulp cells (DPCs) can differentiate into osteoblasts and are deemed a promising cell source for bone regeneration. Static magnetic field (SMF) stimulates osteoblast differentiation but the effect in DPCs remains unknown. The aim of this study was to investigate the effect of SMF exposure on the osteogenic differentiation and mineralization of rat DPCs in vitro. Cells were continuously exposed to SMF at 290 mT in the presence/absence of osteogenic induction [dexamethasone (Dex)/beta-glycerophosphate (beta-GP)]. Results showed that SMF alone did not impair the cell cycle and proliferation. On the other hand, obvious condensation in the metachromatic staining of the extracellular matrix with toluidine blue was observed for SMF-exposed cells as well as the Dex/beta-GP treated cells. SMF in combination with Dex/beta-GP significantly increased the mRNA expression of osteogenic genes, as well as the ALP activity and extracellular calcium concentration at the early stage, followed by obvious calcium deposits later. Besides, SMF exposure increased the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) at 3 h and accelerated the mRNA expression of osteogenic transcription factor, Cbfa1, advancing its activation time from 168 to 72 h under osteogenic induction. In summary, SMF exposure in combination of Dex/beta-GP induction could significantly accelerate the osteogenic differentiation and mineralization of DPCs
Unexpected non-Wigner behavior in level-spacing distributions of next-nearest-neighbor coupled XXZ spin chains
The level-spacing distributions of XXZ spin chains with next-nearest-neighbor
couplings are studied under periodic boundary conditions. We confirm that
integrable XXZ spin chains mostly have the Poisson distribution as expected. On
the contrary, the level-spacing distributions of next-nearest-neighbor coupled
XXZ chains are given by non-Wigner distributions. It is against the
expectations, since the models are nonintegrable.Comment: 4 pages, 4 figures, to be published in Physical Review
Factors affecting In vitro methane production from cecum contents of White Roman geese
The goal of this research was to gain understanding of in vitro methane (CH4) production from the cecal contents of White Roman geese under various incubation conditions. Five experiments were conducted to ascertain the effects of i) incubation time, ii) pH, iii) the addition of formic acid to the culture media, iv) temperature, and v) the addition of salt to the nutritive liquid. Methane production increased significantly with the supplementation of formic acid in the culture fluid (Experiment III). Additionally, CH4 production Experiment V was higher than that without saline. In contrast, low CH4 production occurred under acidic conditions (pH âŠ5.4) and at temperatures higher or lower than typical bird body temperature (43 °C) without formic acid and saline solution in the culture media. Since bird body temperature cannot be controlled easily, approaches such as maintaining cecum fluid at low pH and preventing the formation of formic acid by adjusting the recipes of feeds could be considered for controlling in vivo CH4 production from the intestinal tract digesta of geese
Level statistics of XXZ spin chains with a random magnetic field
The level-spacing distribution of a spin 1/2 XXZ chain is numerically studied
under random magnetic field. We show explicitly how the level statistics
depends on the lattice size L, the anisotropy parameter , and the mean
amplitude of the random magnetic field h. In the energy spectrum, quantum
integrability competes with nonintegrability derived from the randomness, where
the XXZ interaction is modified by the parameter . When ,
the level-spacing distribution mostly shows Wigner-like behavior, while when
=0, Poisson-like behavior appears although the system is nonintegrable
due to randomness. Poisson-like behavior also appears for in the
large h limit. Furthermore, the level-spacing distribution depends on the
lattice size L, particularly when the random field is weak.Comment: 4 pages, 3 figures, to be published in Phys. Rev.
Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems
We calculate the current and the spin-torque in small symmetric double tunnel
barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems.
Spin-accumulation on the superconductor governs the transport properties when
the spin-flip relaxation time is longer than the transport dwell time. In the
elastic transport regime, it is demonstrated that the relative change in the
current (spin-torque) for F-S-F systems equals the relative change in the
current (spin-torque) for F-N-F systems upon changing the relative
magnetization direction of the two ferromagnets. This differs from the results
in the inelastic transport regime where spin-accumulation suppresses the
superconducting gap and dramatically changes the magnetoresistance [S.
Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The
experimental relevance of the elastic and inelastic transport regimes,
respectively, as well as the reasons for the change in the transport properties
are discussed.Comment: 7 page
Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuth-Based Halide Perovskites
An environmentally friendly mixed-halide perovskite MA3Bi2Cl9âxIx with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3Bi2Cl9âxIx perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskitesâMA3Bi2Cl9âyIy and MA3Bi2I9 (named MBCl-I and MBI)âin the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solidâsolid and solidâliquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solidâliquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance
Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands
Reactions of [Mo2(4-pyf)4] (4-Hpyf = 4-pyridylformamidine) with
HgX2 (X = Cl, Br and I) afforded the first 2D and 3D heteronuclear
coordination networks based on quadruple-bonded dimolybdenum
units
- âŠ