151 research outputs found
Comment on "Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects"
In a recent study [Phys. Rev. E 60, 6530 (1999)], Trizac and Raimbault showed
that the effective pair interaction between like charged colloids immersed in a
cylindrically confined electrolyte remains repulsive even when the size of the
micro-ions or the finite longitudinal extension of the confining cylinder are
taken into account. Contrary to their claim, we argue that the case of finite
longitudinal confinement doesn't always generate repulsive interactions and to
illustrate this point we also provide a simple example.Comment: 3 pages, 1 figure. Accepted for publication in Phys. Rev. E 200
Two-point microrheology and the electrostatic analogy
The recent experiments of Crocker et al. suggest that microrheological
measurements obtained from the correlated fluctuations of widely-separatedprobe
particles determine the rheological properties of soft, complex materials more
accurately than do the more traditional particle autocorrelations. This
presents an interesting problem in viscoelastic dynamics. We develop an
important, simplifing analogy between the present viscoelastic problem and
classical electrostatics. Using this analogy and direct calculation we analyze
both the one and two particle correlations in a viscoelastic medium in order to
explain this observation
Generation of Porous Particle Structures using the Void Expansion Method
The newly developed "void expansion method" allows for an efficient
generation of porous packings of spherical particles over a wide range of
volume fractions using the discrete element method. Particles are randomly
placed under addition of much smaller "void-particles". Then, the void-particle
radius is increased repeatedly, thereby rearranging the structural particles
until formation of a dense particle packing.
The structural particles' mean coordination number was used to characterize
the evolving microstructures. At some void radius, a transition from an
initially low to a higher mean coordination number is found, which was used to
characterize the influence of the various simulation parameters. For structural
and void-particle stiffnesses of the same order of magnitude, the transition is
found at constant total volume fraction slightly below the random close packing
limit. For decreasing void-particle stiffness the transition is shifted towards
a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure
Anomalous Effects of "Guest" Charges Immersed in Electrolyte: Exact 2D Results
We study physical situations when one or two "guest" arbitrarily-charged
particles are immersed in the bulk of a classical electrolyte modelled by a
Coulomb gas of positive/negative unit point-like charges, the whole system
being in thermal equilibrium. The models are treated as two-dimensional with
logarithmic pairwise interactions among charged constituents; the
(dimensionless) inverse temperature is considered to be smaller than 2
in order to ensure the stability of the electrolyte against the collapse of
positive-negative pairs of charges. Based on recent progress in the integrable
(1+1)-dimensional sine-Gordon theory, exact formulas are derived for the
chemical potential of one guest charge and for the asymptotic large-distance
behavior of the effective interaction between two guest charges. The exact
results imply, under certain circumstances, anomalous effects such as an
effective attraction (repulsion) between like-charged (oppositely-charged)
guest particles and the charge inversion in the electrolyte vicinity of a
highly-charged guest particle. The adequacy of the concept of renormalized
charge is confirmed in the whole stability region of inverse temperatures and
the related saturation phenomenon is revised.Comment: 21 pages, 1 figur
Dynamics of viscoelastic membranes
We determine both the in-plane and out-of-plane dynamics of viscoelastic
membranes separating two viscous fluids in order to understand microrheological
studies of such membranes. We demonstrate the general viscoelastic signatures
in the dynamics of shear, bending, and compression modes. We also find a
screening of the otherwise two-dimensional character of the response to point
forces due to the presence of solvent. Finally, we show that there is a linear,
hydrodynamic coupling between the in-plane compression modes of the membrane
and the out-of-plane bending modes in the case where the membrane separates two
different fluids or environments
Local influence of boundary conditions on a confined supercooled colloidal liquid
We study confined colloidal suspensions as a model system which approximates
the behavior of confined small molecule glass-formers. Dense colloidal
suspensions become glassier when confined between parallel glass plates. We use
confocal microscopy to study the motion of confined colloidal particles. In
particular, we examine the influence particles stuck to the glass plates have
on nearby free particles. Confinement appears to be the primary influence
slowing free particle motion, and proximity to stuck particles causes a
secondary reduction in the mobility of free particles. Overall, particle
mobility is fairly constant across the width of the sample chamber, but a
strong asymmetry in boundary conditions results in a slight gradient of
particle mobility.Comment: For conference proceedings, "Dynamics in Confinement", Grenoble,
March 201
The response function of a sphere in a viscoelastic two-fluid medium
In order to address basic questions of importance to microrheology, we study
the dynamics of a rigid sphere embedded in a model viscoelastic medium
consisting of an elastic network permeated by a viscous fluid. We calculate the
complete response of a single bead in this medium to an external force and
compare the result to the commonly-accepted, generalized Stokes-Einstein
relation (GSER). We find that our response function is well approximated by the
GSER only within a particular frequency range determined by the material
parameters of both the bead and the network. We then discuss the relevance of
this result to recent experiments. Finally we discuss the approximations made
in our solution of the response function by comparing our results to the exact
solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure
Theory of asymmetric non-additive binary hard-sphere mixtures
We show that the formal procedure of integrating out the degrees of freedom
of the small spheres in a binary hard-sphere mixture works equally well for
non-additive as it does for additive mixtures. For highly asymmetric mixtures
(small size ratios) the resulting effective Hamiltonian of the one-component
fluid of big spheres, which consists of an infinite number of many-body
interactions, should be accurately approximated by truncating after the term
describing the effective pair interaction. Using a density functional treatment
developed originally for additive hard-sphere mixtures we determine the zero,
one, and two-body contribution to the effective Hamiltonian. We demonstrate
that even small degrees of positive or negative non-additivity have significant
effect on the shape of the depletion potential. The second virial coefficient
, corresponding to the effective pair interaction between two big spheres,
is found to be a sensitive measure of the effects of non-additivity. The
variation of with the density of the small spheres shows significantly
different behavior for additive, slightly positive and slightly negative
non-additive mixtures. We discuss the possible repercussions of these results
for the phase behavior of binary hard-sphere mixtures and suggest that
measurements of might provide a means of determining the degree of
non-additivity in real colloidal mixtures
An Automated Algorithm to Distinguish and Characterize Solar Flares and Associated Sequential Chromospheric Brightenings
We present a new automated algorithm to identify, track, and characterize
small-scale brightening associated with solar eruptive phenomena observed in
H{\alpha}. The temporal spatially-localized changes in chromospheric
intensities can be separated into two categories: flare ribbons and sequential
chromospheric brightenings (SCBs). Within each category of brightening we
determine the smallest resolvable locus of pixels, a kernel, and track the
temporal evolution of the position and intensity of each kernel. This tracking
is accomplished by isolating the eruptive features, identifying kernels, and
linking detections between frames into trajectories of kernels. We fully
characterize the evolving intensity and morphology of the flare ribbons by
observing the tracked flare kernels in aggregate. With the location of SCB and
flare kernels identified, they can easily be overlaid on top of complementary
data sets to extract Doppler velocities and magnetic field intensities
underlying the kernels. This algorithm is adaptable to any dataset to identify
and track solar features.Comment: 22 pages, 9 figure
A mean-field kinetic lattice gas model of electrochemical cells
We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate
electrochemical cells. We start from a microscopic lattice-gas model with
charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to
account for the influence of the electric field on ion migration, and
oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating (i) the
electrochemical equilibrium at flat electrodes, which displays the correct
charged double-layer, (ii) the growth kinetics of one-dimensional
electrochemical cells during growth and dissolution, and (iii) electrochemical
dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
- …