151 research outputs found

    Comment on "Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects"

    Full text link
    In a recent study [Phys. Rev. E 60, 6530 (1999)], Trizac and Raimbault showed that the effective pair interaction between like charged colloids immersed in a cylindrically confined electrolyte remains repulsive even when the size of the micro-ions or the finite longitudinal extension of the confining cylinder are taken into account. Contrary to their claim, we argue that the case of finite longitudinal confinement doesn't always generate repulsive interactions and to illustrate this point we also provide a simple example.Comment: 3 pages, 1 figure. Accepted for publication in Phys. Rev. E 200

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    Generation of Porous Particle Structures using the Void Expansion Method

    Full text link
    The newly developed "void expansion method" allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions using the discrete element method. Particles are randomly placed under addition of much smaller "void-particles". Then, the void-particle radius is increased repeatedly, thereby rearranging the structural particles until formation of a dense particle packing. The structural particles' mean coordination number was used to characterize the evolving microstructures. At some void radius, a transition from an initially low to a higher mean coordination number is found, which was used to characterize the influence of the various simulation parameters. For structural and void-particle stiffnesses of the same order of magnitude, the transition is found at constant total volume fraction slightly below the random close packing limit. For decreasing void-particle stiffness the transition is shifted towards a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure

    Anomalous Effects of "Guest" Charges Immersed in Electrolyte: Exact 2D Results

    Full text link
    We study physical situations when one or two "guest" arbitrarily-charged particles are immersed in the bulk of a classical electrolyte modelled by a Coulomb gas of positive/negative unit point-like charges, the whole system being in thermal equilibrium. The models are treated as two-dimensional with logarithmic pairwise interactions among charged constituents; the (dimensionless) inverse temperature β\beta is considered to be smaller than 2 in order to ensure the stability of the electrolyte against the collapse of positive-negative pairs of charges. Based on recent progress in the integrable (1+1)-dimensional sine-Gordon theory, exact formulas are derived for the chemical potential of one guest charge and for the asymptotic large-distance behavior of the effective interaction between two guest charges. The exact results imply, under certain circumstances, anomalous effects such as an effective attraction (repulsion) between like-charged (oppositely-charged) guest particles and the charge inversion in the electrolyte vicinity of a highly-charged guest particle. The adequacy of the concept of renormalized charge is confirmed in the whole stability region of inverse temperatures and the related saturation phenomenon is revised.Comment: 21 pages, 1 figur

    Dynamics of viscoelastic membranes

    Get PDF
    We determine both the in-plane and out-of-plane dynamics of viscoelastic membranes separating two viscous fluids in order to understand microrheological studies of such membranes. We demonstrate the general viscoelastic signatures in the dynamics of shear, bending, and compression modes. We also find a screening of the otherwise two-dimensional character of the response to point forces due to the presence of solvent. Finally, we show that there is a linear, hydrodynamic coupling between the in-plane compression modes of the membrane and the out-of-plane bending modes in the case where the membrane separates two different fluids or environments

    Local influence of boundary conditions on a confined supercooled colloidal liquid

    Full text link
    We study confined colloidal suspensions as a model system which approximates the behavior of confined small molecule glass-formers. Dense colloidal suspensions become glassier when confined between parallel glass plates. We use confocal microscopy to study the motion of confined colloidal particles. In particular, we examine the influence particles stuck to the glass plates have on nearby free particles. Confinement appears to be the primary influence slowing free particle motion, and proximity to stuck particles causes a secondary reduction in the mobility of free particles. Overall, particle mobility is fairly constant across the width of the sample chamber, but a strong asymmetry in boundary conditions results in a slight gradient of particle mobility.Comment: For conference proceedings, "Dynamics in Confinement", Grenoble, March 201

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    An Automated Algorithm to Distinguish and Characterize Solar Flares and Associated Sequential Chromospheric Brightenings

    Full text link
    We present a new automated algorithm to identify, track, and characterize small-scale brightening associated with solar eruptive phenomena observed in H{\alpha}. The temporal spatially-localized changes in chromospheric intensities can be separated into two categories: flare ribbons and sequential chromospheric brightenings (SCBs). Within each category of brightening we determine the smallest resolvable locus of pixels, a kernel, and track the temporal evolution of the position and intensity of each kernel. This tracking is accomplished by isolating the eruptive features, identifying kernels, and linking detections between frames into trajectories of kernels. We fully characterize the evolving intensity and morphology of the flare ribbons by observing the tracked flare kernels in aggregate. With the location of SCB and flare kernels identified, they can easily be overlaid on top of complementary data sets to extract Doppler velocities and magnetic field intensities underlying the kernels. This algorithm is adaptable to any dataset to identify and track solar features.Comment: 22 pages, 9 figure

    A mean-field kinetic lattice gas model of electrochemical cells

    Full text link
    We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate electrochemical cells. We start from a microscopic lattice-gas model with charged particles, and build mean-field kinetic equations following the lines of earlier work for neutral particles. We include the Poisson equation to account for the influence of the electric field on ion migration, and oxido-reduction processes on the electrode surfaces to allow for growth and dissolution. We confirm the viability of our approach by simulating (i) the electrochemical equilibrium at flat electrodes, which displays the correct charged double-layer, (ii) the growth kinetics of one-dimensional electrochemical cells during growth and dissolution, and (iii) electrochemical dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
    • …
    corecore