31 research outputs found

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations

    Calcium dynamics and associated temporal patterns of milk constituents in early-lactation multiparous Holsteins

    No full text
    ABSTRACT: At the onset of lactation, calcium (Ca) homeostasis is challenged. For the transitioning dairy cow, inadequate responses to this challenge may result in subclinical hypocalcemia at some point in the postpartum period. It has been proposed that dynamics of blood Ca and the timing of subclinical hypocalcemia allow cows to be classified into 4 Ca dynamic groups by assessing serum total Ca concentrations (tCa) at 1 and 4 days in milk (DIM). These differing dynamics are associated with different risks of adverse health events and suboptimal production. Our prospective cohort study aimed to characterize the temporal patterns of milk constituents in cows with differing Ca dynamics to investigate the potential of Fourier-transform infrared spectroscopic (FTIR) analysis of milk as a diagnostic tool for identifying cows with unfavorable Ca dynamics. We sampled the blood of 343 multiparous Holsteins on a single dairy in Cayuga County, New York, at 1 and 4 DIM and classified these cows into Ca dynamic groups using threshold concentrations of tCa (1 DIM: tCa <1.98 mmol/L; 4 DIM: tCa <2.22 mmol/L) derived from receiver operating characteristic curve analysis based on epidemiologically relevant health and production outcomes. We also collected proportional milk samples from each of these cows from 3 to 10 DIM for FTIR analysis of milk constituents. Through this analysis we estimated the milk constituent levels of anhydrous lactose (g/100 g of milk and g/milking), true protein (g/100 g of milk and g/milking), fat (g/100 g of milk and g/milking), milk urea nitrogen (mg/100 g of milk), fatty acid (FA) groups including de novo, mixed origin, and preformed FA measured in grams/100 g of milk, by relative percentage, and grams/milking, as well as energy-related metabolites including ketone bodies and milk-predicted blood nonesterified FA. Individual milk constituents were compared among groups at each time point and over the entire sample period using linear regression models. Overall, we found differences among the constituent profiles of Ca dynamic groups at approximately every time point and over the entire sample period. The 2 at-risk groups of cows did not differ from each other at more than one time point for any constituent, however prominent differences existed between the milk of normocalcemic cows and the milk of the other Ca dynamic groups with respect to FA. Over the entire sample period, lactose and protein yield (g/milking) were lower in the milk of at-risk cows than in the milk of the other Ca dynamic groups. In addition, milk yield per milking followed patterns consistent with previous Ca dynamic group research. Though our use of a single farm does limit the general applicability of these findings, our conclusions provide evidence that FTIR may be a useful method for discriminating between cows with different Ca dynamics at time points that may be relevant in the optimization of management or development of clinical intervention strategies

    Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis

    No full text
    BACKGROUND: Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work are to evaluate B. pertussis infection on highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. METHODS: Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. RESULTS: PHAE and HBE cells infected with B. pertussis wild type strain revealed bacterial adherence to cell’s apical surface and bacterial induced cytoskeleton changes and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthemore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. CONCLUSIONS: The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo
    corecore