122 research outputs found

    Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions

    Full text link
    The m-Tamari lattice of F. Bergeron is an analogue of the clasical Tamari order defined on objects counted by Fuss-Catalan numbers, such as m-Dyck paths or (m+1)-ary trees. On another hand, the Tamari order is related to the product in the Loday-Ronco Hopf algebra of planar binary trees. We introduce new combinatorial Hopf algebras based on (m+1)-ary trees, whose structure is described by the m-Tamari lattices. In the same way as planar binary trees can be interpreted as sylvester classes of permutations, we obtain (m+1)-ary trees as sylvester classes of what we call m-permutations. These objects are no longer in bijection with decreasing (m+1)-ary trees, and a finer congruence, called metasylvester, allows us to build Hopf algebras based on these decreasing trees. At the opposite, a coarser congruence, called hyposylvester, leads to Hopf algebras of graded dimensions (m+1)^{n-1}, generalizing noncommutative symmetric functions and quasi-symmetric functions in a natural way. Finally, the algebras of packed words and parking functions also admit such m-analogues, and we present their subalgebras and quotients induced by the various congruences.Comment: 51 page

    A complete set of covariants of the four qubit system

    Full text link
    We obtain a complete and minimal set of 170 generators for the algebra of SL(2,\C)^{\times 4}-covariants of a binary quadrilinear form. Interpreted in terms of a four qubit system, this describes in particular the algebraic varieties formed by the orbits of local filtering operations in its projective Hilbert space. Also, this sheds some light on the local unitary invariants, and provides all the possible building blocks for the construction of entanglement measures for such a system.Comment: 14 pages, IOP macros; slightly expanded versio

    Commutative combinatorial Hopf algebras

    Full text link
    We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary trees and rooted forests are discussed. Finally, we introduce one-parameter families interpolating between different structures constructed on the same combinatorial objects.Comment: 29 pages, LaTEX; expanded and updated version of math.CO/050245
    corecore