1,217 research outputs found

    Complexity for extended dynamical systems

    Full text link
    We consider dynamical systems for which the spatial extension plays an important role. For these systems, the notions of attractor, epsilon-entropy and topological entropy per unit time and volume have been introduced previously. In this paper we use the notion of Kolmogorov complexity to introduce, for extended dynamical systems, a notion of complexity per unit time and volume which plays the same role as the metric entropy for classical dynamical systems. We introduce this notion as an almost sure limit on orbits of the system. Moreover we prove a kind of variational principle for this complexity.Comment: 29 page

    A Numerical Study of the Hierarchical Ising Model: High Temperature Versus Epsilon Expansion

    Full text link
    We study numerically the magnetic susceptibility of the hierarchical model with Ising spins (σ=±1\sigma =\pm 1) above the critical temperature and for two values of the epsilon parameter. The integrations are performed exactly, using recursive methods which exploit the symmetries of the model. Lattices with up to 2182^18 sites have been used. Surprisingly, the numerical data can be fitted very well with a simple power law of the form (1β/βc)γ(1- \beta /\beta _c )^{- \gamma} for the {\it whole} temperature range. The numerical values for γ\gamma agree within a few percent with the values calculated with a high-temperature expansion but show significant discrepancies with the epsilon-expansion. We would appreciate comments about these results.Comment: 15 Pages, 12 Figures not included (hard copies available on request), uses phyzzx.te

    A Two-Parameter Recursion Formula For Scalar Field Theory

    Get PDF
    We present a two-parameter family of recursion formulas for scalar field theory. The first parameter is the dimension (D)(D). The second parameter (ζ\zeta) allows one to continuously extrapolate between Wilson's approximate recursion formula and the recursion formula of Dyson's hierarchical model. We show numerically that at fixed DD, the critical exponent γ\gamma depends continuously on ζ\zeta. We suggest the use of the ζ\zeta -independence as a guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur

    Evidence for Complex Subleading Exponents from the High-Temperature Expansion of the Hierarchical Ising Model

    Get PDF
    Using a renormalization group method, we calculate 800 high-temperature coefficients of the magnetic susceptibility of the hierarchical Ising model. The conventional quantities obtained from differences of ratios of coefficients show unexpected smooth oscillations with a period growing logarithmically and can be fitted assuming corrections to the scaling laws with complex exponents.Comment: 10 pages, Latex , uses revtex. 2 figures not included (hard copies available on request

    Thermodynamic Limit Of The Ginzburg-Landau Equations

    Full text link
    We investigate the existence of a global semiflow for the complex Ginzburg-Landau equation on the space of bounded functions in unbounded domain. This semiflow is proven to exist in dimension 1 and 2 for any parameter values of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some restrictions on the parameters but cover nevertheless some part of the Benjamin-Feijer unstable domain.Comment: uuencoded dvi file (email: [email protected]

    A Guide to Precision Calculations in Dyson's Hierarchical Scalar Field Theory

    Get PDF
    The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson's hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green's functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cut-off limit is obtained by letting beta reach a critical value beta_c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when beta -> beta_c, this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4.Comment: Uses revtex with psfig, 31 pages including 15 figure

    Renormalizing Partial Differential Equations

    Full text link
    In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]

    Aperiodic Ising model on the Bethe lattice: Exact results

    Full text link
    We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.Comment: 7 pages, 3 figures, minor correction

    High-Accuracy Calculations of the Critical Exponents of Dyson's Hierarchical Model

    Full text link
    We calculate the critical exponent gamma of Dyson's hierarchical model by direct fits of the zero momentum two-point function, calculated with an Ising and a Landau-Ginzburg measure, and by linearization about the Koch-Wittwer fixed point. We find gamma= 1.299140730159 plus or minus 10^(-12). We extract three types of subleading corrections (in other words, a parametrization of the way the two-point function depends on the cutoff) from the fits and check the value of the first subleading exponent from the linearized procedure. We suggest that all the non-universal quantities entering the subleading corrections can be calculated systematically from the non-linear contributions about the fixed point and that this procedure would provide an alternative way to introduce the bare parameters in a field theory model.Comment: 15 pages, 9 figures, uses revte

    Dynamics of a map with power-law tail

    Get PDF
    We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt transition order-to-chaos mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induced intermittency.Comment: 28 pages, 17 figure
    corecore