43,569 research outputs found
Automatic generation of robot and manual assembly plans using octrees
This paper aims to investigate automatic assembly planning for robot and manual assembly. The octree decomposition technique is applied to approximate CAD models with an octree representation which are then used to generate robot and manual assembly plans. An assembly planning system able to generate assembly plans was developed to build these prototype models. Octree decomposition is an effective assembly planning tool. Assembly plans can automatically be generated for robot and manual assembly using octree models. Research limitations/implications - One disadvantage of the octree decomposition technique is that it approximates a part model with cubes instead of using the actual model. This limits its use and applications when complex assemblies must be planned, but in the context of prototyping can allow a rough component to be formed which can later be finished by hand. Assembly plans can be generated using octree decomposition, however, new algorithms must be developed to overcome its limitations
Design of magnetic traps for neutral atoms with vortices in type-II superconducting micro-structures
We design magnetic traps for atoms based on the average magnetic field of
vortices induced in a type-II superconducting thin film. This magnetic field is
the critical ingredient of the demonstrated vortex-based atom traps, which
operate without transport current. We use Bean's critical-state method to model
the vortex field through mesoscopic supercurrents induced in the thin strip.
The resulting inhomogeneous magnetic fields are studied in detail and compared
to those generated by multiple normally-conducting wires with transport
currents. Various vortex patterns can be obtained by programming different
loading-field and transport current sequences. These variable magnetic fields
are employed to make versatile trapping potentials.Comment: 11 pages, 14 figure
Free Form Lensing Implications for the Collision of Dark Matter and Gas in the Frontier Fields Cluster MACSJ0416.1-2403
We present a free form mass reconstruction of the massive lensing cluster
MACSJ0416.1-2403 using the latest Hubble Frontier Fields data. Our model
independent method finds that the extended lensing pattern is generated by two
elongated, closely projected clusters of similar mass. Our lens model
identifies new lensed images with which we improve the accuracy of the dark
matter distribution. We find that the bimodal mass distribution is nearly
coincident with the bimodal X-ray emission, but with the two dark matter peaks
lying closer together than the centroids of the X-ray emisison. We show this
can be achieved if the collision has occurred close to the plane and such that
the cores are deflected around each other. The projected mass profiles of both
clusters are well constrained because of the many interior lensed images,
leading to surprisingly flat mass profiles of both components in the region
15-100 kpc. We discuss the extent to which this may be generated by tidal
forces in our dynamical model which are large during an encounter of this type
as the cores "graze" each other. The relative velocity between the two cores is
estimated to be about 1200 km/s and mostly along the line of sight so that our
model is consistent with the relative redshift difference between the two cD
galaxies (dz = 0.04).Comment: 22 pages, 18 figures, 2 table
Enhancement of plasticity in Ti-based metallic glass matrix composites by controlling characteristic and volume fraction of primary phase
In this study, Ti-based metallic glass matrix composites with high plasticity have been developed by controlling characteristic and volume fraction of primary phase embedded in the glass matrix. By careful alloy design procedure, the compositions of Ć/glass phases, which are in metastable equilibrium have been properly selected, therefore the mechanical properties can be tailored by selecting the alloy compositions between the composition of Ć and glass phases. The relation between the compressive yield strength and volume fraction of Ć phase is well described using the rule of mixtures
Widely separated binary systems of very low mass stars
In this paper we review some recent detections of wide binary brown dwarf
systems and discuss them in the context of the multiplicity properties of very
low-mass stars and brown dwarfs.Comment: 2 pages, 1 figure (new version with minor corrections); to appear in
the proceedings of the workshop "Ultra-low mass star formation and
evolution", to be published in A
Recommended from our members
Where Are My Intelligent Assistant's Mistakes? A Systematic Testing Approach
Intelligent assistants are handling increasingly critical tasks, but until now, end users have had no way to systematically assess where their assistants make mistakes. For some intelligent assistants, this is a serious problem: if the assistant is doing work that is important, such as assisting with qualitative research or monitoring an elderly parentās safety, the user may pay a high cost for unnoticed mistakes. This paper addresses the problem with WYSIWYT/ML (What You See Is What You Test for Machine Learning), a human/computer partnership that enables end users to systematically test intelligent assistants. Our empirical evaluation shows that WYSIWYT/ML helped end users find assistantsā mistakes significantly more effectively than ad hoc testing. Not only did it allow users to assess an assistantās work on an average of 117 predictions in only 10 minutes, it also scaled to a much larger data set, assessing an assistantās work on 623 out of 1,448 predictions using only the usersā original 10 minutesā testing effort
- ā¦