1,323 research outputs found

    Transition to turbulence in particulate pipe flow

    Get PDF
    We investigate experimentally the influence of suspended particles on the transition to turbulence. The particles are monodisperse and neutrally-buoyant with the liquid. The role of the particles on the transition depends both upon the pipe to particle diameter ratios and the concentration. For large pipe-to-particle diameter ratios the transition is delayed while it is lowered for small ratios. A scaling is proposed to collapse the departure from the critical Reynolds number for pure fluid as a function of concentration into a single master curve.Comment: 4 pages, 4 figure

    Diffractive deeply inelastic scattering in future electron-ion colliders

    Full text link
    The impact of nonlinear effects in the diffractive observables that will be measured in future electron-ion collisions is investigated. We present, for the first time, the predictions for the diffractive structure function and reduced cross sections derived using the solution to the Balitsky--Kovchegov equation with the collinearly-improved kernel and including the impact-parameter dependence. We demonstrate that the contribution of the diffractive events is enhanced in nuclear collisions and that the study of the ratio between the nuclear and proton predictions will be useful to discriminate among different models of the dipole-target scattering amplitude and, consequently, will allow us to constrain the description of QCD dynamics in parton densities.Comment: 12 pages, 10 figure

    Relationship Between Jump Capacity and Performance in BMX Cycling

    Get PDF
    The objective of this study is to assess the relationship between the results obtained on different vertical jump tests and the top score recorded during a BMX (Bicycle Moto-Cross) test and the rider''s performance. To do so, 10 BMX pilots participated in this study; 5 regarded as the elite group (EG) (age: 18.8 +/- 3.7, weight: 68.4 +/- 8.5 kg, height: 174 +/- 9 cm and previous BMX experience: 8 +/- 3.8 years) and 5 regarded as the recreational group (RG) (age: 19.8 +/- 4.8, weight: 69.2 +/- 11.7 kg, height: 170 +/- 9 cm, previous BMX experience: 4.2 +/- 1.3 years). Vertical jump capacity was obtained using the Bosco protocol, i.e. vertical squat jump (SJ), vertical countermovement jump (CMJ), drop jump (DJ) and repetitive jump (RJ), and time in race in a BMX circuit was determined. The results indicate a direct relationship between the time used to complete the circuit and the height of the jump reached in SJ (r: -.801; p:.017), CMJ (r : -.798; p :.018) and DJ (r : -.782; p:.022). This all suggests that assessing jump capacity using the Bosco test may be a useful tool for assessing BMX performance

    Generic 3D Representation via Pose Estimation and Matching

    Full text link
    Though a large body of computer vision research has investigated developing generic semantic representations, efforts towards developing a similar representation for 3D has been limited. In this paper, we learn a generic 3D representation through solving a set of foundational proxy 3D tasks: object-centric camera pose estimation and wide baseline feature matching. Our method is based upon the premise that by providing supervision over a set of carefully selected foundational tasks, generalization to novel tasks and abstraction capabilities can be achieved. We empirically show that the internal representation of a multi-task ConvNet trained to solve the above core problems generalizes to novel 3D tasks (e.g., scene layout estimation, object pose estimation, surface normal estimation) without the need for fine-tuning and shows traits of abstraction abilities (e.g., cross-modality pose estimation). In the context of the core supervised tasks, we demonstrate our representation achieves state-of-the-art wide baseline feature matching results without requiring apriori rectification (unlike SIFT and the majority of learned features). We also show 6DOF camera pose estimation given a pair local image patches. The accuracy of both supervised tasks come comparable to humans. Finally, we contribute a large-scale dataset composed of object-centric street view scenes along with point correspondences and camera pose information, and conclude with a discussion on the learned representation and open research questions.Comment: Published in ECCV16. See the project website http://3drepresentation.stanford.edu/ and dataset website https://github.com/amir32002/3D_Street_Vie

    Cell wall disassembly is delayed by rhamnogalacturonate lyase gene silencing: potential role in fruit firmness

    Get PDF
    Strawberry fruits greatly reduce their quality due to softening during ripening with economically important losses. Texture changes of fleshy fruits during ripening are mainly due to middle lamellae dissolution, cell-to-cell adhesion losses and wall weakening of parenchyma cells by the coordinated action of several cell wall enzymes. Pectin degradation has been proven a key factor in strawberry softening by functional analysis of several pectinase genes (polygalacturonase, pectate lyase and -galactosidase). The complexity and highly dynamic nature of pectins remains a challenge to fully elucidate structure-function relationships of pectins. In this work, we present the functional analysis of two independent strawberry transgenic lines with more than 95% silencing of a rhamnogalacturonate lyase gene (FaRGLyase1). Firmness of ripe fruit was significantly higher in both transgenic lines than in the control. Cell walls from these fruits were extracted and analyzed by glycan microarray profiling. This high‐throughput technique allows a wide screening of cell-wall glycan occurrence based on the detection of specific cell wall oligosaccharide epitopes by monoclonal antibodies and reveals profiles which can be used as potential fingerprints specific for a singular organ and/or developmental stage. Our microarray results showed that the silencing of FaRGLyase1 reduced degradation of several rhamnogalacturonan-I related epitopes, as expected. Additionally, comparison of transgenic cell walls from ripe fruits with those extracted from control fruits at different developmental stages (green, white and red) by hierarchical clustering, demonstrated a higher similarity of transgenic fruit cell walls with the control cell walls from fruits at the white stage. Glycan microarray profiles revealed less degraded fruit cell walls as result of FaRGLyase1 down-regulation which could contribute to the increased firmness of transgenic fruitsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Vortices catapult droplets in atomization

    No full text
    International audienceA droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave--just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex

    Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening

    Get PDF
    Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 ”M 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures

    Experimental investigation of silicate-carbonate system at high pressure and high temperature

    Get PDF
    Melting and subsolidus relations in the (Mg,Fe)SiO3-(M,Fe)CO3, (Mg,Fe)(2)SiO4-(Mg,Fe)CO3, and (Mg,Fe)O-(Me,Fe)CO2 systems have been investigated at 14, 15, 16 and 25 GPa, 1973 K and 2173 K, using a 1000 t uniaxial multi anvil split sphere apparatus. The iron-magnesium partition coefficients between magnesite and silicates or oxides have been measured in subsolidus assemblages. Iron is always partitioned preferentially in the silicate and oxide phases, the order of increasing partitioning being pyroxene, olivine, silicate perovskite, wadsleyite and magnesiowustite. A thermodynamic model of iron-magnesium distribution between magnesite and all these phases, based on Gibbs free energy minimization, is established. Melting of pyroxene-magnesite and olivine-magnesite pseudo binary systems is eutectic, with eutectic points close to 1973 K and 60 mol % carbonate at 15 GPa in both systems. In the more complex mantle system, it is likely that such melts would form in the transition zone by heating and homogenization of deep subducted carbonates. The melts formed in the olivine-carbonate system are characterized by high Mg+Fe/Si ratios and thus unlikely to be primary kimberlitic magmas, a conclusion in agreement with previous studies in the peridotite-CO2 system, On the other hand, the observed pyroxene-magnesite melts formed at transition zone conditions have Mg+Fe/Si ratios that are comparable to those of natural kimberlites, suggesting that melting of carbonated pyroxenites at high pressures could be a source of kimberlitic magmas
    • 

    corecore