79 research outputs found
The quantized Hall conductance of a single atomic wire: A proposal based on synthetic dimensions
We propose a method by which the quantization of the Hall conductance can be
directly measured in the transport of a one-dimensional atomic gas. Our
approach builds on two main ingredients: (1) a constriction optical potential,
which generates a mesoscopic channel connected to two reservoirs, and (2) a
time-periodic modulation of the channel, specifically designed to generate
motion along an additional synthetic dimension. This fictitious dimension is
spanned by the harmonic-oscillator modes associated with the tightly-confined
channel, and hence, the corresponding "lattice sites" are intimately related to
the energy of the system. We analyze the quantum transport properties of this
hybrid two-dimensional system, highlighting the appealing features offered by
the synthetic dimension. In particular, we demonstrate how the energetic nature
of the synthetic dimension, combined with the quasi-energy spectrum of the
periodically-driven channel, allows for the direct and unambiguous observation
of the quantized Hall effect in a two-reservoir geometry. Our work illustrates
how topological properties of matter can be accessed in a minimal
one-dimensional setup, with direct and practical experimental consequences.
Anisotropic 2D diffusive expansion of ultra-cold atoms in a disordered potential
We study the horizontal expansion of vertically confined ultra-cold atoms in
the presence of disorder. Vertical confinement allows us to realize a situation
with a few coupled harmonic oscillator quantum states. The disordered potential
is created by an optical speckle at an angle of 30{\deg} with respect to the
horizontal plane, resulting in an effective anisotropy of the correlation
lengths of a factor of 2 in that plane. We observe diffusion leading to
non-Gaussian density profiles. Diffusion coefficients, extracted from the
experimental results, show anisotropy and strong energy dependence, in
agreement with numerical calculations
Conduction of Ultracold Fermions Through a Mesoscopic Channel
In a mesoscopic conductor electric resistance is detected even if the device
is defect-free. We engineer and study a cold-atom analog of a mesoscopic
conductor. It consists of a narrow channel connecting two macroscopic
reservoirs of fermions that can be switched from ballistic to diffusive. We
induce a current through the channel and find ohmic conduction, even for a
ballistic channel. An analysis of in-situ density distributions shows that in
the ballistic case the chemical potential drop occurs at the entrance and exit
of the channel, revealing the presence of contact resistance. In contrast, a
diffusive channel with disorder displays a chemical potential drop spread over
the whole channel. Our approach opens the way towards quantum simulation of
mesoscopic devices with quantum gases
Light-shift tomography in an optical-dipole trap for neutral atoms
We report on light-shift tomography of a cloud of 87 Rb atoms in a
far-detuned optical-dipole trap at 1565 nm. Our method is based on standard
absorption imaging, but takes advantage of the strong light-shift of the
excited state of the imaging transition, which is due to a quasi-resonance of
the trapping laser with a higher excited level. We use this method to (i) map
the equipotentials of a crossed optical-dipole trap, and (ii) study the
thermalisation of an atomic cloud by following the evolution of the
potential-energy of atoms during the free-evaporation process
All-optical runaway evaporation to Bose-Einstein condensation
We demonstrate runaway evaporative cooling directly with a tightly confining
optical dipole trap and achieve fast production of condensates of 1.5x10^5 87Rb
atoms. Our scheme is characterized by an independent control of the optical
trap confinement and depth, permitting forced evaporative cooling without
reducing the trap stiffness. Although our configuration is particularly well
suited to the case of 87Rb atoms in a 1565nm optical trap, where an efficient
initial loading is possible, our scheme is general and should allow all-optical
evaporative cooling at constant stiffness for most species
Transport regimes of cold gases in a two-dimensional anisotropic disorder
We numerically study the dynamics of cold atoms in a two-dimensional
disordered potential. We consider an anisotropic speckle potential and focus on
the classical regime, which is relevant to some recent experiments. First, we
study the behavior of particles with a fixed energy and identify different
transport regimes. For low energy, the particles are classically localized due
to the absence of a percolating cluster. For high energy, the particles undergo
normal diffusion and we show that the diffusion constants scale algebraically
with the particle energy, with an anisotropy factor which significantly differs
from that of the disordered potential. For intermediate energy, we find a
transient sub-diffusive regime, which is relevant to the time scale of typical
experiments. Second, we study the behavior of a cold-atomic gas with an
arbitrary energy distribution, using the above results as a groundwork. We show
that the density profile of the atomic cloud in the diffusion regime is
strongly peaked and, in particular, that it is not Gaussian. Its behavior at
large distances allows us to extract the energy-dependent diffusion constants
from experimental density distributions. For a thermal cloud released into the
disordered potential, we show that our numerical predictions are in agreement
with experimental findings. Not only does this work give insights to recent
experimental results, but it may also serve interpretation of future
experiments searching for deviation from classical diffusion and traces of
Anderson localization.Comment: 19 pages, 16 figure
Quantum transport in ultracold atoms
Ultracold atoms confined by engineered magnetic or optical potentials are
ideal systems for studying phenomena otherwise difficult to realize or probe in
the solid state because their atomic interaction strength, number of species,
density, and geometry can be independently controlled. This review focuses on
quantum transport phenomena in atomic gases that mirror and oftentimes either
better elucidate or show fundamental differences with those observed in
mesoscopic and nanoscopic systems. We discuss significant progress in
performing transport experiments in atomic gases, contrast similarities and
differences between transport in cold atoms and in condensed matter systems,
and survey inspiring theoretical predictions that are difficult to verify in
conventional setups. These results further demonstrate the versatility offered
by atomic systems in the study of nonequilibrium phenomena and their promise
for novel applications.Comment: 24 pages, 7 figures. A revie
Identifying topological edge states in 2D optical lattices using light scattering
We recently proposed in a Letter [Physical Review Letters 108 255303] a novel
scheme to detect topological edge states in an optical lattice, based on a
generalization of Bragg spectroscopy. The scope of the present article is to
provide a more detailed and pedagogical description of the system - the
Hofstadter optical lattice - and probing method. We first show the existence of
topological edge states, in an ultra-cold gas trapped in a 2D optical lattice
and subjected to a synthetic magnetic field. The remarkable robustness of the
edge states is verified for a variety of external confining potentials. Then,
we describe a specific laser probe, made from two lasers in Laguerre-Gaussian
modes, which captures unambiguous signatures of these edge states. In
particular, the resulting Bragg spectra provide the dispersion relation of the
edge states, establishing their chiral nature. In order to make the Bragg
signal experimentally detectable, we introduce a "shelving method", which
simultaneously transfers angular momentum and changes the internal atomic
state. This scheme allows to directly visualize the selected edge states on a
dark background, offering an instructive view on topological insulating phases,
not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP
Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases". Extended version of arXiv:1203.124
Zero dimensional exciton-polaritons
We present a novel semiconductor structure in which 0D polaritons coexist with 2D microcavity polaritons. Spatial trapping of the 2D microcavity polaritons results from the confinement of their photonic part in a potential well, consisting of an adjustable thickness variation of the spacer layer. This original technique allows to create polaritonic boxes of any size and shape. Strong coupling regime is evidenced by the typical energy level anticrossing, in real space and in momentum space, and supported by a theoretical model
Thermal weakening friction during seismic slip experiments and models with heat sources and sinks
Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral)
- âŠ