3,304 research outputs found

    On the Radii of Close-in Giant Planets

    Get PDF
    The recent discovery that the close-in extrasolar giant planet, HD209458b, transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet, τ\tau Boo b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD209458b and τ\tau Boo b in that context. We find that HD209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is not due to the thermal expansion of its atmosphere, but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet, but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (≥\geq0.5 A.U.), no later than a few times 10710^7 years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter

    Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W+/-. I

    Get PDF
    We consider a Hamiltonian with cutoffs describing the weak decay of spin one massive bosons into the full family of leptons. The Hamiltonian is a self-adjoint operator in an appropriate Fock space with a unique ground state. We prove a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval.Comment: Correction of minor misprint

    Coalescence in the 1D Cahn-Hilliard model

    Full text link
    We present an approximate analytical solution of the Cahn-Hilliard equation describing the coalescence during a first order phase transition. We have identified all the intermediate profiles, stationary solutions of the noiseless Cahn-Hilliard equation. Using properties of the soliton lattices, periodic solutions of the Ginzburg-Landau equation, we have construct a family of ansatz describing continuously the processus of destabilization and period doubling predicted in Langer's self similar scenario

    Twisting algebras using non-commutative torsors

    Full text link
    Non-commutative torsors (equivalently, two-cocycles) for a Hopf algebra can be used to twist comodule algebras. After surveying and extending the literature on the subject, we prove a theorem that affords a presentation by generators and relations for the algebras obtained by such twisting. We give a number of examples, including new constructions of the quantum affine spaces and the quantum tori.Comment: 27 pages. Masuoka is a new coauthor. Introduction was revised. Sections 1 and 2 were thoroughly restructured. The presentation theorem in Section 3 is now put in a more general framework and has a more general formulation. Section 4 was shortened. All examples (quantum affine spaces and tori, twisting of SL(2), twisting of the enveloping algebra of sl(2)) are left unchange

    Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    Get PDF
    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc

    On the Origin of HD149026b

    Get PDF
    The high density of the close-in extrasolar planet HD149026b suggests the presence of a huge core in the planet, which challenges planet formation theory. We first derive constraints on the amount of heavy elements and hydrogen/helium present in the planet: We find that preferred values of the core mass are between 50 and 80 M_E. We then investigate the possibility of subcritical core accretion as envisioned for Uranus and Neptune and find that the subcritical accretion scenario is unlikely in the case of HD149026b for at least two reasons: (i) Subcritical planets are such that the ratio of their core mass to their total mass is above ~0.7, in contradiction with constraints for all but the most extreme interior models of HD149026b; (ii) High accretion rates and large isolation mass required for the formation of a subcritical core of 30 M_E are possible only at specific orbital distances in a disk with a surface density of dust equal to at least 10 times that of the minimum mass solar nebula. This value climbs to 30 when considering a 50 M_E core. These facts point toward two main routes for the formation of this planet: (i) Gas accretion that is limited by a slow viscous inflow of gas in an evaporating disk; (ii) A significant modification of the composition of the planet after as accretion has stopped. These two routes are not mutually exclusive. Illustrating the second route, we show that for a wide range of impact parameters, giant impacts lead to a loss of the gas component of the planet and thus may lead to planets that are highly enriched in heavy elements. In the giant impact scenario, we expect an outer giant planet to be present. Observational studies by imaging, astrometry and long term interferometry of this system are needed to better narrow down the ensemble of possibilities.Comment: 29 pages, 8 figures, to appear in the 10 October 2006 issue of Ap
    • …
    corecore