991 research outputs found

    A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    Get PDF
    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue. (C) 2015 AIP Publishing LLC

    Optical/near-infrared selection of red QSOs: Evidence for steep extinction curves towards galactic centers?

    Full text link
    We present the results of a search for red QSOs using a selection based on optical imaging from SDSS and near-infrared imaging from UKIDSS. For a sample of 58 candidates 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except a handul at redshifts z>3.5. The dust is most likely located in the QSO host galaxies. 4 (7%) of the candidates turned out to be late-type stars, and another 4 (7%) are compact galaxies. The remaining 4 objects we could not identify. In terms of their optical spectra the QSOs are similar to the QSOs selected in the FIRST-2MASS red Quasar survey except they are on average fainter, more distant and only two are detected in the FIRST survey. We estimate the amount of extinction using the SDSS QSO template reddened by SMC-like dust. It is possible to get a good match to the observed (restframe ultraviolet) spectra, but for nearly all the reddened QSOs it is not possible to match the near-IR photometry from UKIDSS. The likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and that the assumed SMC extinction curve is too shallow. Our survey has demonstrated that selection of QSOs based on near-IR photometry is an efficent way to select QSOs, including reddened QSOs, with only small contamination from late-type stars and compact galaxies. This will be useful with ongoing and future wide-field near-IR surveys such as the VISTA and EUCLID surveys. [Abridged]Comment: 74 pages, 6 figures. Accepted for for publication in ApJ

    Serendipitous discovery of a projected pair of QSOs separated by 4.5 arcsec on the sky

    Full text link
    We present the serendipitous discovery of a projected pair of quasi-stellar objects (QSOs) with an angular separation of Δθ=4.50\Delta\theta =4.50 arcsec. The redshifts of the two QSOs are widely different: one, our programme target, is a QSO with a spectrum consistent with being a narrow line Seyfert 1 AGN at z=2.05z=2.05. For this target we detect Lyman-α\alpha, \ion{C}{4}, and \ion{C}{3]}. The other QSO, which by chance was included on the spectroscopic slit, is a Type 1 QSO at a redshift of z=1.68z=1.68, for which we detect \ion{C}{4}, \ion{C}{3]} and \ion{Mg}{2}. We compare this system to previously detected projected QSO pairs and find that only about a dozen previously known pairs have smaller angular separation.Comment: 4 pages, 3 figures. Accepted for publication in A

    Improved measurements of ICRF antenna input impedance at ASDEX upgrade during ICRF coupling studies

    Get PDF
    A new set of diagnostics has been implemented on ASDEX Upgrade to measure the input impedance of the ICRF antennas, in the form of a voltage and current probe pair installed on each feeding line of every antenna. Besides allowing the measurement of the reflection coefficient Gamma of each antenna port, the probes have two advantages: first, they are located close to the antenna ports (similar to 3 m) and thus the measurements are not affected by the uncertainties due to the transmission and matching network; second, they are independent of matching conditions. These diagnostics have been used to study the behavior of the ASDEX Upgrade antennas while changing the plasma shape (low to high triangularity) and applying magnetic perturbations (MPs) via saddle coils. Scans in the separatrix position R-sep were also performed. Upper triangularity delta(o) was increased from 0.1 to 0.3 (with the lower triangularity delta(o) kept roughly constant at 0.45) and significant decreases in vertical bar Gamma vertical bar (up to similar to 30%, markedly improving antenna coupling) and moderate changes in phase (up to similar to 5 degrees) off on each feeding line were observed approximately at delta(o) >= 0.29. During MPs (in similar to 0.5 s pulses with a coil current of 1 kA), a smaller response was observed: 6% - 7% in vertical bar Gamma vertical bar, with changes in phase of 5 apparently due to R p scans only. As 1 is usually in the range 0.8 - 0.9, this still leads to a significant increase in possible coupled power. Numerical simulations of the antenna behavior were carried out using the FELICE code; the simulation results are in qualitative agreement with experimental measurements. The results presented here complement the studies on the influence of gas injection and MPs on the ICRF antenna performance presented in [4]

    Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths

    Full text link
    The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J=20J=20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100\% redshift completeness of the sample. The population of high AVA_V quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, is found to contribute 21%5+921\%^{+9}_{-5} of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%8+939\%^{+9}_{-8} reddened quasars defined by having AV>0.1A_V>0.1, and 21%5+921\%^{+9}_{-5} of the sample having E(BV)>0.1E(B-V)>0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the grg-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy is most dominant at z1z \lesssim 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population at J<20J<20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys.Comment: 22 pages, 10 figures, accepted for publication in A&A. The ArXiv abstract has been shortened for it to be printabl

    Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

    Full text link
    We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]Comment: 24 pages, 24 figures, accepted for publication in A&

    Visualization of the operational space of edge-localized modes through low-dimensional embedding of probability distributions

    Get PDF
    Information visualization aimed at facilitating human perception is an important tool for the interpretation of experiments on the basis of complex multidimensional data characterizing the operational space of fusion devices. This work describes a method for visualizing the operational space on a two-dimensional map and applies it to the discrimination of type I and type III edge-localized modes (ELMs) from a series of carbon-wall ELMy discharges at JET. The approach accounts for stochastic uncertainties that play an important role in fusion data sets, by modeling measurements with probability distributions in a metric space. The method is aimed at contributing to physical understanding of ELMs as well as their control. Furthermore, it is a general method that can be applied to the modeling of various other plasma phenomena as well

    The High A(V) Quasar Survey: Reddened quasi-stellar objects selected from optical/near-infrared photometry - II

    Full text link
    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the one used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 {\mu}m flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 {\mu}m relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-infrared selection of red QSOs.Comment: 64 pages, 18 figures, 16 pages of tables. Accepted to ApJ

    Directional Radiation and Photodissociation Regions in Molecular Hydrogen Clouds

    Full text link
    Some astrophysical observations of molecular hydrogen point to a broadening of the velocity distribution for molecules at excited rotational levels. This effect is observed in both Galactic and high redshift clouds. Analysis of H_2, HD, and CI absorption lines has revealed the broadening effect in the absorption system of QSO 1232+082 (z_{abs}=2.33771). We analyze line broadening mechanisms by considering in detail the transfer of ultraviolet radiation (in the resonance lines of the Lyman and Werner H_2 molecular bands) for various velocity distributions at excited rotational levels. The mechanism we suggest includes the saturation of the lines that populate excited rotational levels (radiative pumping) and manifests itself most clearly in the case of directional radiation in the medium. Based on the calculated structure of a molecular hydrogen cloud in rotational level populations, we have considered an additional mechanism that takes into account the presence of a photodissociation region. Note that disregarding the broadening effects we investigated can lead to a significant systematic error when the data are processed.Comment: 14 pages, 10 figure
    corecore