71 research outputs found

    Multifractal detrending moving average cross-correlation analysis

    Full text link
    There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. The multifractal detrended cross-correlation analysis (MF-DCCA) approaches can be used to quantify such cross-correlations, such as the MF-DCCA based on detrended fluctuation analysis (MF-X-DFA) method. We develop in this work a class of MF-DCCA algorithms based on the detrending moving average analysis, called MF-X-DMA. The performances of the MF-X-DMA algorithms are compared with the MF-X-DFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving average processes and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxyh_{xy} extracted from the MF-X-DMA and MF-X-DFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross-correlation is independent of the cross-correlation coefficient between two time series and the MF-X-DFA and centered MF-X-DMA algorithms have comparative performance, which outperform the forward and backward MF-X-DMA algorithms. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MF-X-DMA algorithm gives the best estimates of hxy(q)h_{xy}(q) since its hxy(2)h_{xy}(2) is closest to 0.5 as expected, and the MF-X-DFA algorithm has the second best performance. For the volatilities, the forward and backward MF-X-DMA algorithms give similar results, while the centered MF-X-DMA and the MF-X-DFA algorithms fails to extract rational multifractal nature.Comment: 15 pages, 4 figures, 2 matlab codes for MF-X-DMA and MF-X-DF

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    Asymptotic behavior of self-affine processes in semi-infinite domains

    Full text link
    We propose to model the stochastic dynamics of a polymer passing through a pore (translocation) by means of a fractional Brownian motion, and study its behavior in presence of an absorbing boundary. Based on scaling arguments and numerical simulations, we present a conjecture that provides a link between the persistence exponent θ\theta and the Hurst exponent HH of the process, thus sheding light on the spatial and temporal features of translocation. Furthermore, we show that this conjecture applies more generally to a broad class of self affine processes undergoing anomalous diffusion in bounded domains, and we discuss some significant examples.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let

    asympTest: an R package for performing parametric statistical tests and confidence intervals based on the central limit theorem

    No full text
    This paper describes an R package implementing large sample tests andconfidence intervals (based on the central limit theorem) for variousparameters. The one and two sample mean and variance contexts are considered.The statistics for all the tests are expressed in the same form, whichfacilitates their presentation. In the variance parameter cases, the asymptoticrobustness of the classical tests depends on the departure of the datadistribution from normality measured in terms of the kurtosis of thedistribution

    Conditioning in spatial point processes

    No full text
    • …
    corecore