1,363 research outputs found
Characterization of the known T type dwarfs towards the Sigma Orionis cluster
(Abridged) A total of three T type candidates (SOri70, SOri73, and
SOriJ0538-0213) lying in the line of sight towards Sigma Orionis were
characterized by means of near-infrared photometric, astrometric, and
spectroscopic studies. H-band methane images were collected for all three
sources and an additional sample of 15 field T type dwarfs using LIRIS/WHT.
J-band spectra of resolution of ~500 were obtained for SOriJ0538-0213 with
ISAAC/VLT, and JH spectra of resolution of ~50 acquired with WFC3/HST were
employed for the spectroscopic classification of SOri70 and 73. Proper motions
with a typical uncertainty of +/-3 mas/yr and a time interval of ~7-9 yr were
derived. Using the LIRIS observations of the field T dwarfs, we calibrated this
imager for T spectral typing via methane photometry. The three SOri objects
were spectroscopically classified as T4.5+/-0.5 (SOri73), T5+/-0.5
(SOriJ0538-0213), and T7 (SOri70). The similarity between the
observed JH spectra and the methane colors and the data of field ultra-cool
dwarfs of related classifications suggests that SOri70, 73, and
SOriJ053804.65-021352.5 do not deviate significantly in surface gravity in
relation to the field. Additionally, the detection of KI at ~1.25 microns in
SOriJ0538-0213 points to a high-gravity atmosphere. Only the K-band reddish
nature of SOri70 may be consistent with a low gravity atmosphere. The proper
motions of SOri70 and 73 are measurable and are larger than that of the cluster
by >3.5 sigma. The proper motion of SOriJ0538-0213 is consistent with a null
displacement. These observations suggest that none of the three T dwarfs are
likely Sigma Orionis members, and that either planetary-mass objects with
masses below ~4 MJup may not exist free-floating in the cluster or they may lie
at fainter near-infrared magnitudes than those of the targets (this is H>20.6
mag), thus remaining unidentified to date.Comment: Accepted for publication in A&A (2014), corrected typo
A New Pleiades Member at the Lithium Substellar Boundary
We present the discovery of an object in the Pleiades open cluster, named
Teide 2, with optical and infrared photometry which place it on the cluster
sequence slightly below the expected substellar mass limit. We have obtained
low- and high-resolution spectra that allow us to determine its spectral type
(M6), radial velocity and rotational broadening; and to detect H in
emission and Li I 670.8 nm in absorption. All the observed properties strongly
support the membership of Teide 2 into the Pleiades. This object has an
important role in defining the reappearance of lithium below the substellar
limit in the Pleiades. The age of the Pleiades very low-mass members based on
their luminosities and absence or presence of lithium is constrained to be in
the range 100--120 Myr.Comment: 17 pages, 3 figure
Confirming the least massive members of the Pleiades star cluster
We present optical photometry (i- and Z-band) and low-resolution spectroscopy
(640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the
Pleiades star cluster (120 Myr). The main goal is to address their cluster
membership via photometric, astrometric, and spectroscopic studies, and to
determine the properties of the least massive population of the cluster through
the comparison of the data with younger and older spectral counterparts and
state-of-the art model atmospheres. We confirm three bona-fide Pleiades members
that have extremely red optical and infrared colors, effective temperatures of
~1150 K and ~1350 K, and masses in the interval 11-20 Mjup, and one additional
likely member that shares the same motion as the cluster but does not appear to
be as red as the other members with similar brightness. This latter object
requires further near-infrared spectroscopy to fully address its membership in
the Pleiades. The optical spectra of two bona-fide members were classified as
L6-L7 and show features of KI, a tentative detection of CsI, hydrides and water
vapor with an intensity similar to high-gravity dwarfs of related
classification despite their young age. The properties of the Pleiades L6-L7
members clearly indicate that very red colors of L dwarfs are not a direct
evidence of ages younger than ~100 Myr. We also report on the determination of
the bolometric corrections for the coolest Pleiades members. These data can be
used to interpret the observations of the atmospheres of exoplanets orbiting
stars.Comment: Accepted for publication in MNRAS (17 pages
Discovery of a Low-Mass Brown Dwarf Companion of the Young Nearby Star G196-3
A substellar-mass object in orbit at about 300 astronomical units (AU) from
the young low-mass star G196-3 was detected by direct imaging. Optical and
infrared photometry and low- and intermediate-resolution spectroscopy of the
faint companion, hereafter referred to as G196-3B, confirms its cool atmosphere
and allows its mass to be estimated at 25^{+15}_{-10} Jupiter masses. The
separation between both objects and their mass ratio suggest the fragmentation
of a collapsing cloud as the most likely origin for G196-3B, but alternatively
it could have originated from a proto-planetary disc which has been dissipated.
Whatever the formation process was, the young age of the primary star (about
100 Myr) demonstrates that substellar companions can form in short time scales.Comment: Published in Science (13 Nov). One color figur
Membership and Multiplicity among Very Low-Mass Stars and Brown Dwarfs in the Pleiades Cluster
We present near-infrared photometry and optical spectroscopy of very low-mass
stars and brown dwarf candidates in the Pleiades open cluster. The membership
status of these objects is assessed. Eight objects out of 45 appear to be
non-members. A search for companions among 34 very low-mass Pleiades members
(M0.09 M) in high-spatial resolution images obtained with the
Hubble Space Telescope and the adaptive optics system of the
Canada-France-Hawaii telescope produced no resolved binaries with separations
larger than 0.2 arcsec (a ~ 27 AU; P ~ 444 years). Nevertheless, we find
evidence for a binary sequence in the color-magnitude diagrams, in agreement
with the results of Steele & Jameson (1995) for higher mass stars. We compare
the multiplicity statistics of the Pleiades very low-mass stars and brown
dwarfs with that of G and K-type main sequence stars in the solar neighborhood
(Duquennoy & Mayor 1991). We find that there is some evidence for a deficiency
of wide binary systems (separation >27 AU) among the Pleiades very low-mass
members. We briefly discuss how this result can fit with current scenarios of
brown dwarf formation. We correct the Pleiades substellar mass function for the
contamination of cluster non-members found in this work. We find a
contamination level of 33% among the brown dwarf candidates identified by
Bouvier et al. (1998). Assuming a power law IMF across the substellar boundary,
we find a slope dN/dM ~ M^{-0.53}, implying that the number of objects per mass
bin is still rising but the contribution to the total mass of the cluster is
declining in the brown dwarf regime.Comment: to be published in The Astrophysical Journa
The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects
We investigate the mass function in the substellar domain down to a few
Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d =
360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of
790 arcmin^2 close to the cluster centre. This survey was complemented with an
infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using
colour-magnitude diagrams, we have selected 49 candidate cluster members in the
magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0
mum and previously known spectral features of youth, 30 objects are bona fide
cluster members. Four are first identified from our optical-near infrared data.
Eleven have most probable masses below the deuterium burning limit and are
classified as planetary-mass object candidates. The slope of the substellar
mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M
< 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects
form via fragmentation, may lie below 0.006 Msol. The frequency of sigma
Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity
in the mass function and in the frequency of discs suggests that very low-mass
stars and substellar objects, even below the deuterium-burning mass limit, may
share the same formation mechanism.Comment: Accepted for publication in A&A (12/04/2007). It has not been edited
for language ye
- âŠ