254 research outputs found

    Testing Higgs models via the H±WZH^\pm W^\mp Z vertex by a recoil method at the International Linear Collider

    Full text link
    In general, charged Higgs bosons H±H^\pm appear in non-minimal Higgs models. The H±WZH^\pm W^\mp Z vertex is known to be related to the violation of the global symmetry (custodial symmetry) in the Higgs sector. Its magnitude strongly depends on the structure of the exotic Higgs models which contain higher isospin SU(2)LSU(2)_L representations such as triplet Higgs bosons. We study the possibility of measuring the H±WZH^\pm W^\mp Z vertex via single charged Higgs boson production associated with the W±W^\pm boson at the International Linear Collider (ILC) by using the recoil method. The feasibility of the signal e+eH±Wνjje^+e^-\to H^\pm W^\mp \to \ell \nu jj is analyzed assuming the polarized electron and positron beams and the expected detector performance for the resolution of the two-jet system at the ILC. The background events can be reduced to a considerable extent by imposing the kinematic cuts even if we take into account the initial state radiation. For a relatively light charged Higgs boson whose mass mH±m_{H^\pm} is in the region of 120-130 GeV <mH±<mW+mZ< m_{H^\pm} < m_W+m_Z, the H±WZH^\pm W^\mp Z vertex would be precisely testable especially when the decay of H±H^\pm is lepton specific. The exoticness of the extended Higgs sector can be explored by using combined information for this vertex and the rho parameter.Comment: 22 pages, 23 figure

    Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches

    Full text link
    We study radiative corrections to the electroweak parameters in the Higgs model with the Y=1 triplet field, which is introduced in the scenario of generating neutrino masses based on the so-called type II seesaw mechanism. In this model, the rho parameter deviates from unity at the tree level. Consequently, the electroweak sector of the model is described by the four input parameters such as αem\alpha_{\text{em}}, GFG_F, mZm_Z and sin2θW\sin^2\theta_W. We calculate the one loop contribution to the W boson mass as well as to the rho parameter in order to clarify the possible mass spectrum of the extra Higgs bosons under the constraint from the electroweak precision data. We find that the hierarchical mass spectrum among H±±H^{\pm\pm}, H±H^{\pm} and AA (or HH) is favored by the precision data especially for the case of mAm_A (mH)>mH+>mH++(\simeq m_H)>m_{H^+}>m_{H^{++}}, where H±±H^{\pm\pm}, H±H^{\pm}, AA and HH are the doubly-charged, singly-charged, CP-odd and CP-even Higgs bosons mainly originated from the triplet field. We also discuss phenomenological consequences of such a mass spectrum with relatively large mass splitting. The decay rate of the Higgs boson decay into two photons is evaluated under the constraint from the electroweak precision data, regarding the recent Higgs boson searches at the CERN LHC.Comment: 17 pages, 23 figures, version published in PRD, title slightly modifie

    Measurements of the charge-to-mass ratio of particles trapped by the Paul Trap for education

    Full text link
    Paul traps are devices that confine particles using an oscillating electric field and have been used in undergraduate experimental classes at universities. Owing to the requirement of a high voltage of several thousand volts, no cases of use in middle and high schools are available. Therefore, we developed an all-in-one-type Paul trap device that included a high-voltage transformer. The Paul trap can be equipped with three different types of electrode attachments, ring-type, and linear-type , and the trap image can be observed using a built-in web camera. For example, the charge-to-mass ratio of particles was measured with different types of attachments, and it was shown that reasonable values could be obtained. This type of trap is currently used at several educational facilities in Japan.Comment: 6 pages, 12 figure

    Indium coverage of the Si(111)- 7×3 -in surface

    Get PDF
    The indium coverage of the Si(111)-√7 × √3-In surface is investigated by means of x-ray photoelectron spectroscopy and first-principles density functional theory calculations. Both experimental and theoretical results indicate that the In coverage is a double layer rather than a single layer. Moreover, the atomic structure of the Si(111)-√7 × √3-In surface is discussed by comparing experimental with simulated scanning tunneling microscopy (STM) images and scanning tunneling spectra with the calculated density of states. Our structural assignment agrees with previous studies, except for the interpretation of experimental STM images

    Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology

    Full text link
    Possible models of Yukawa interaction are discussed in the two Higgs doublet model (THDM) under the discrete symmetry imposed to avoid the flavor changing neutral current at the leading order. It is known that there are four types of such models corresponding to the possible different assignment of charges for the discrete symmetry on quarks and leptons. We first examine decay properties of Higgs bosons in each type of the models, and summarize constraints on the models from current experimental data. We then shed light on the differences among these models in collider phenomenology. In particular, we mainly discuss so-called the Type-II THDM and the Type-X THDM. The Type-II THDM corresponds to the model with the same Yukawa interaction as the minimal supersymmetric standard model (MSSM). On the other hand, in the Type-X THDM, additional Higgs bosons can predominantly decay into leptons. This scenario may be interesting because of the motivation for a light charged Higgs boson scenario such as in the TeV scale model of neutrino, dark matter and baryogenesis. We study how we can distinguish the Type-X THDM from the MSSM at the Large Hadron Collider and the International Linear Collider.Comment: 33 pages, 41 eps files, version accepted for publication in Physical Review
    corecore