157 research outputs found
Absolute flux measurements for swift atoms
While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube
Ionized Gas Kinematics and Morphology in Sgr B2 Main on 1000 AU Scales
We have imaged the Sgr B2 Main region with the Very Large Array in the BnA
configuration ( = 0\farcs13) in both the H52 (45.453
GHz) radio recombination line (RRL) and 7 mm continuum emission. At a distance
of 8500 pc, this spatial resolution corresponds to a physical scale of 0.005 pc
(1100 AU). The current observations detect H52 emission in 12
individual ultracompact (UC) and hypercompact (HC) HII regions. Two of the
sources with detected H52 emission have broad
(V50 \kms) recombination lines, and two of the sources
show lines with peaks at more than one velocity. We use line parameters from
the H52 lines and our previous H66 line observations to
determine the relative contribution of thermal, pressure and kinematic
broadening, and electron density. These new observations suggest that pressure
broadening can account for the broad lines in some of the sources, but that gas
motions (e.g. turbulence, accretion or outflow) contribute significantly to the
broad lines in at least one of the sources (Sgr B2 F3).Comment: 10 pages, 2 figure
A high flux source of swift oxygen atoms
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV
Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem
Accretion flows onto massive stars must transfer mass so quickly that they
are themselves gravitationally unstable, forming dense clumps and filaments.
These density perturbations interact with young massive stars, emitting
ionizing radiation, alternately exposing and confining their HII regions. As a
result, the HII regions are predicted to flicker in flux density over periods
of decades to centuries rather than increasing monotonically in size as
predicted by simple Spitzer solutions. We have recently observed the Sgr B2
region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and
BnA) at a resolution of 0.25''. These observations were made to compare in
detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr
B2 contains 41 UC HII regions, 6 of which are hypercompact. The new
observations of Sgr B2 allow comparison of relative peak flux densites for the
HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the
most source-rich massive star forming regions in the Milky Way. The new 1.3 cm
continuum images indicate that four of the 41 UC HII regions exhibit
significant changes in their peak flux density, with one source (K3) dropping
in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing
in peak flux density. The results are consistent with statistical predictions
from simulations of high mass star formation, suggesting that they offer a
solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical
Journal Letter
The Early Evolution of Massive Stars: Radio Recombination Line Spectra
Velocity shifts and differential broadening of radio recombination lines are
used to estimate the densities and velocities of the ionized gas in several
hypercompact and ultracompact HII regions. These small HII regions are thought
to be at their earliest evolutionary phase and associated with the youngest
massive stars. The observations suggest that these HII regions are
characterized by high densities, supersonic flows and steep density gradients,
consistent with accretion and outflows that would be associated with the
formation of massive stars.Comment: ApJ in pres
Dark cloud cores and gravitational decoupling from turbulent flows
We test the hypothesis that the starless cores may be gravitationally bound
clouds supported largely by thermal pressure by comparing observed molecular
line spectra to theoretical spectra produced by a simulation that includes
hydrodynamics, radiative cooling, variable molecular abundance, and radiative
transfer in a simple one-dimensional model. The results suggest that the
starless cores can be divided into two categories: stable starless cores that
are in approximate equilibrium and will not evolve to form protostars, and
unstable pre-stellar cores that are proceeding toward gravitational collapse
and the formation of protostars. The starless cores might be formed from the
interstellar medium as objects at the lower end of the inertial cascade of
interstellar turbulence. Additionally, we identify a thermal instability in the
starless cores. Under par ticular conditions of density and mass, a core may be
unstable to expansion if the density is just above the critical density for the
collisional coupling of the gas and dust so that as the core expands the
gas-dust coupling that cools the gas is reduced and the gas warms, further
driving the expansion.Comment: Submitted to Ap
The Different Structures of the Two Classes of Starless Cores
We describe a model for the thermal and dynamical equilibrium of starless
cores that includes the radiative transfer of the gas and dust and simple CO
chemistry. The model shows that the structure and behavior of the cores is
significantly different depending on whether the central density is either
above or below about 10^5 cm-3. This density is significant as the critical
density for gas cooling by gas-dust collisions and also as the critical density
for dynamical stability, given the typical properties of the starless cores.
The starless cores thus divide into two classes that we refer to as thermally
super-critical and thermally sub-critical.This two-class distinction allows an
improved interpretation of the different observational data of starless cores
within a single model.Comment: ApJ in pres
Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing
In this paper we present a successful experimental test of filling a volume
of 6 m with argon gas, starting from normal ambient air and reducing the
impurities content down to few parts per million (ppm) oxygen equivalent. This
level of contamination was directly monitored measuring the slow component of
the scintillation light of the Ar gas, which is sensitive to {\it all} sources
of impurities affecting directly the argon scintillation.Comment: 9 pages, 6 figures, to appear in Proc. 1st International Workshop
towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba,
March 201
Oscillations of starless cores
If the split, asymmetric molecular spectral line profiles that are seen in
many starless cores are interpreted as indicative of global collapse or
expansion of the core then one possible implication is that most starless cores
have short lifetimes on the order of the collapse or sound crossing time scale.
An alternative interpretation of the line profiles as indicative of
perturbations on an underlying equilibrium structure leads to the opposite
implication, that many cores have long lifetimes. While evidence suggests that
some cores are collapsing on a free-fall time scale, we show that observations
of some other starless cores can be reproduced by a model of non-radial
oscillations about the equilibrium configuration of a pressure-bounded,
thermally-supported sphere (Bonnor-Ebert sphere). We model the oscillations as
linear perturbations following a standard analysis developed for stellar
pulsations and compare the column densities and molecular spectral line
profiles predicted from a particular model to observations of the Bok globule
B68.Comment: submitted to the Astrophysical Journa
Radiative transfer modelling of W33A MM1: 3D structureand dynamics of a complex massive star-forming region
We present a composite model and radiative transfer simulations of the massive star-forming core W33A MM1. The model was tailored to reproduce the complex features observed with Atacama Large Millimeter/submillimeter Array at â0.2âarcsec resolution in CHâCN and dust emission. The MM1 core is fragmented into six compact sources coexisting within âŒ1000 au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star (Mâ â 7 Mâ) and disc + envelope (Mgas â 0.4 Mâ), and is the most luminous (LMain ⌠10⎠Lâ). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the centre of mass of the region. Radial collapse and fragmentation within this filament as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a âŒ10Âł au disc and envelope is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object
- âŠ