249 research outputs found

    Weak lensing by large scale structure in open, flat, and closed universes

    Get PDF
    Weak lensing is the distortion (polarization) of images of distant objects, such as high redshift galaxies, by gravitational fields in the limit where the distortion is small. Gravitational potential fluctuations due to large scale structure cause correlated distortions of the images of high redshift galaxies. These distortions are observable with current large telescopes and instrumentation. In a Friedmann-Robertson-Walker (FRW) metric I calculate the weak lensing pattern due to large scale structure for arbitrary \Omega_0 and zero cosmological constant \Lambda. For a given cosmological model, specified by \Omega_0 and a power spectrum of density fluctuations, I calculate the statistical properties of the polarization field for an arbitrary redshift source distribution in a simple closed form. It is shown that for low redshift z of the sources, the polarization amplitude is proportional to \Omega_0, while at higher redshift the polarization measures the value of \Omega(z), where z is the characteristic source redshift. Moreover, the statistics of the polarization field are a direct measure of the power spectrum of density fluctuations

    The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    Get PDF
    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias parameter, i.e., models in which the peculiar velocities of clusters are large enough that the errors do not render the analysis impracticable

    The Gravitational Lensing in Redshift-space Correlation Functions of Galaxies and Quasars

    Get PDF
    The gravitational lensing, as well as the velocity field and the cosmological light-cone warp, changes the observed correlation function of high-redshift objects. We present an analytical expression of 3D correlation function, simultaneously including those three effects. When two objects are separated over several hundreds Mpc along a line of sight, the observed correlation function is dominated by the effect of gravitational lensing rather than the intrinsic clustering. For a canonical lambda-CDM model, the lensing signals in the galaxy-galaxy and galaxy-QSO correlations are beyond noise levels in large-scale redshift surveys like the Sloan Digital Sky Survey.Comment: 10 pages, 1 figure, submitted to ApJ

    Femtolens Imaging of a Quasar Central Engine Using a Dwarf Star Telescope

    Get PDF
    We show that it is possible to image the structure of a distant quasar on scales of ∼1 \sim 1\,AU by constructing a telescope which uses a nearby dwarf star as its ``primary lens'' together with a satellite-borne ``secondary''. The image produced by the primary is magnified by ∼105\sim 10^5 in one direction but is contracted by 0.5 in the other, and therefore contains highly degenerate one-dimensional information about the two-dimensional source. We discuss various methods for extracting information about the second dimension including ``femtolens interferometry'' where one measures the interference between different parts of the one-dimensional image with each other. Assuming that the satellite could be dispatched to a position along a star-quasar line of sight at a distance rr from the Sun, the nearest available dwarf-star primary is likely to be at \sim 15\,\pc\,(r/40\,\rm AU)^{-2}. The secondary should consist of a one-dimensional array of mirrors extending ∼700 \sim 700\,m to achieve 1 AU resolution, or ∼100 \sim 100\,m to achieve 4 AU resolution.Comment: 12 pages including 3 embedded figure

    Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes

    Full text link
    Weak lensing by large scale structure induces correlated ellipticities in the images of distant galaxies. The two-point correlation is determined by the matter power spectrum along the line of sight. We use the fully nonlinear evolution of the power spectrum to compute the predicted ellipticity correlation. We present results for different measures of the second moment for angular scales \theta \simeq 1'-3 degrees and for alternative normalizations of the power spectrum, in order to explore the best strategy for constraining the cosmological parameters. Normalizing to observed cluster abundance the rms amplitude of ellipticity within a 15' radius is \simeq 0.01 z_s^{0.6}, almost independent of the cosmological model, with z_s being the median redshift of background galaxies. Nonlinear effects in the evolution of the power spectrum significantly enhance the ellipticity for \theta < 10' -- on 1' the rms ellipticity is \simeq 0.05, which is nearly twice the linear prediction. This enhancement means that the signal to noise for the ellipticity is only weakly increasing with angle for 2'< \theta < 2 degrees, unlike the expectation from linear theory that it is strongly peaked on degree scales. The scaling with cosmological parameters also changes due to nonlinear effects. By measuring the correlations on small (nonlinear) and large (linear) angular scales, different cosmological parameters can be independently constrained to obtain a model independent estimate of both power spectrum amplitude and matter density \Omega_m. Nonlinear effects also modify the probability distribution of the ellipticity. Using second order perturbation theory we find that over most of the range of interest there are significant deviations from a normal distribution.Comment: 38 pages, 11 figures included. Extended discussion of observational prospects, matches accepted version to appear in Ap

    Testing a new analytic model for gravitational lensing probabilities

    Full text link
    We study gravitational lensing with a multiple lens plane approach, proposing a simple analytical model for the probability distribution function (PDF) of the dark matter convergence, kappa, for the different lens planes in a given cosmology as a function of redshift and smoothing angle, theta. The model is fixed solely by the variance of kappa, which in turn is fixed by the amplitude of the power spectrum, sigma_8. We test the PDF against a high resolution Tree-Particle-Mesh simulation and find that it is far superior to the Gaussian or the lognormal, especially for small values of theta << 1 arcmin and at large values of kappa relevant to strong lensing. With this model, we predict the probabilities of strong lensing by a single plane or by multiple planes. We find that for theta ~ 10 arcsec, a single plane accounts for almost all (~ 98%) of the strong lensing cases for source redshift unity. However, for a more typical source redshift of 4, about 12% of the strong lensing cases will result from the contribution of a secondary clump of matter along the line of sight, introducing a systematic error in the determination of the surface density of clusters, typically overestimating it by about 2-5%. We also find that matter inhomogenieties introduce a dispersion in the value of the angular diameter distance about its cosmological mean. The probable error relative to the mean increases with redshift to a value of about 8% for z ~ 6 and theta ~ 10 arcsec.Comment: Accepted for publication in ApJ, 13 pages, 12 figures, revised version, references added, section 6 expande

    The distortion of distant galaxy images by large-scale structure

    Get PDF
    Inhomogeneity in the distribution of mass in the universe on scales ≲ 100 Mpc can generate a coherent shear distortion or polarization of the images of background galaxies. This distortion may be measurable over patches of the sky up to a few square degrees in size. If this distortion is measured, or conversely, if its magnitude is limited, it should help us understand the degree to which luminosity traces the underlying mass over cosmological scales. A prescription is given for quantifying the galaxy distortion and a propagation equation for its evolution in an inhomogeneous universe is derived. The creation of shear by inhomogeneity is illustrated using model kinematic universes comprising random distributions of point masses, spheres and circular discs designed to simulate the superclusters, voids and ‘walls’ reported in galaxy velocity surveys. Using these simulations, we estimate that an rms induced ellipticity of |p|_(rms) ˜ 0.2Ω_(LSS) (where Ω_(LSS) is the fraction of the mass of the universe clustered on the large scale) will be produced. The angular correlation length is ˜ 1.6°. In an alternative prescription, the universe is modelled using a power spectrum of density fluctuations and the mean correlation function is computed both analytically and numerically. In these simulations we find that |p|_(rms) ˜0.02 for biased cold dark matter models of an Einslein–De Sitter universe, and the effective correlation length is θ_(1/2) ˜ 0.5^ΰ. For a hot dark matter dominated universe the correlation length is θ_(1/2) ˜ 0.7^ΰ. The faint, blue galaxies discovered by Tyson and collaborators have a surface density of ˜ 3 × 10^5 deg^(−2) and should provide an ideal set of sources for measuring this effect
    • …
    corecore