1,869 research outputs found

    Compaction of anisotropic granular materials : experiments and simulations

    Full text link
    We present both experimental and numerical investigations of compaction in granular materials composed of rods. As a function of the aspect ratio of the particles, we have observed large variations of the asymptotic packing volume fraction in vertical tubes. The relevant parameter is the ratio between the rod length \ell and the tube diameter DD. Even the compaction dynamics remains unchanged for various particle lengths, a 3d/2d phase transition for grain orientations is observed for /D=1\ell/D = 1. A toy model for the compaction of needles on a lattice is also proposed. This toy model gives a complementary view of our experimental results and leads to behaviors similar to experimental ones.Comment: 5 pages, 10 figure

    Experimental study of the compaction dynamics for 2D anisotropic granular materials

    Full text link
    We present an experimental study of the compaction dynamics for two-dimensional anisotropic granular systems. Compaction dynamics is measured at three different scales : (i) the macroscopic scale through the packing fraction ρ\rho, (ii) the mesoscopic scale through both fractions of aligned grains ϕa\phi_{a} and ideally ordered grains ϕio\phi_{io}, and (iii) the microscopic scale through both rotational and translational grain mobilities μr,t\mu_{r,t}. The effect of the grain rotations on the compaction dynamics has been measured. At the macroscopic scale, we have observed a discontinuity in the late stages of the compaction curve. At the mesoscopic scale, we have observed the formation and the growth of domains made of aligned grains. From a microscopic point of view, measurements reveal that the beginning of the compaction process is essentially related to translational motion of the grains. The grains rotations drive mainly the process during the latest stages of compaction.Comment: 8pages, 11 figure

    Critical parameters for the partial coalescence of a droplet

    Full text link
    The partial coalescence of a droplet onto a planar liquid/liquid interface is investigated experimentally by tuning the viscosities of both liquids. The problem mainly depends on four dimensionless parameters: the Bond number (gravity vs. surface tension), the Ohnesorge numbers (viscosity in both fluids vs. surface tension), and the density relative difference. The ratio between the daughter droplet size and the mother droplet size is investigated as a function of these dimensionless numbers. Global quantities such as the available surface energy of the droplet has been measured during the coalescence. The capillary waves propagation and damping are studied in detail. The relation between these waves and the partial coalescence is discussed. Additional viscous mechanisms are proposed in order to explain the asymmetric role played by both viscosities.Comment: 16 pages, 14 figures, submitted to Physical Review

    Effect of friction in a toy model of granular compaction

    Full text link
    We proposed a toy model of granular compaction which includes some resistance due to granular arches. In this model, the solid/solid friction of contacting grains is a key parameter and a slipping threshold Wc is defined. Realistic compaction behaviors have been obtained. Two regimes separated by a critical point Wc* of the slipping threshold have been emphasized : (i) a slow compaction with lots of paralyzed regions, and (ii) an inverse logarithmic dynamics with a power law scaling of grain mobility. Below the critical point Wc*, the physical properties of this frozen system become independent of Wc. Above the critical point Wc*, i.e. for low friction values, the packing properties behave as described by the classical Janssen theory for silos

    Ripple and kink dynamics

    Full text link
    We propose a relevant modification of the Nishimori-Ouchi model [{\em Phys. Rev. Lett.} {\bf 71}, 197 (1993)] for granular landscape erosion. We explicitly introduce a new parameter: the angle of repose θr\theta_r, and a new process: avalanches. We show that the θr\theta_r parameter leads to an asymmetry of the ripples, as observed in natural patterns. The temporal evolution of the maximum ripple height hmaxh_{max} is limited and not linear, according to recent observations. The ripple symmetry and the kink dynamics are studied and discussed.Comment: 7 pages, 10 figure, RevTe

    Flow of magnetic repelling grains in a two-dimensional silo

    Full text link
    During a typical silo discharge, the material flow rate is determined by the contact forces between the grains. Here, we report an original study concerning the discharge of a two-dimensional silo filled with repelling magnetic grains. This non-contact interaction leads to a different dynamics from the one observed with conventional granular materials. We found that, although the flow rate dependence on the aperture size follows roughly the power-law with an exponent 3/23/2 found in non-repulsive systems, the density and velocity profiles during the discharge are totally different. New phenomena must be taken into account. Despite the absence of contacts, clogging and intermittence were also observed for apertures smaller than a critical size determined by the effective radius of the repulsive grains.Comment: 6 pages, 8 figure

    A Relationship Between River Modification and Species Richness of Freshwater Turtles in Iowa

    Get PDF
    Comparisons were made of turtle populations in Red Rock Reservoir and the major rivers of the Mississippi River and Missouri River damage systems in Iowa. Of the inland rivers of the Mississippi drainage examined in this study, the Des Moines River had the least amount of remaining turtle habitat. Number of turtle species ranged from five in the Des Moines River to 11 in the Mississippi River, but only three species were found in Red Rock Reservoir. In the Missouri drainage, number of turtle species ranged from three in both the Little Sioux and Nishnabotna rivers to five in the Missouri River. Regression analysis found remaining turtle habitat to be the strongest predictor of species richness. Stream modification appeared to lower the species richness of riverine turtles by eliminating intolerant species. Intolerant forms were absent when river modification eliminated their habitat and created a more uniform and simplified environment Map turtles (Graptemys geographica LeSueur), false map turtles (Graptemys pseudogeographica Gray), Blanding\u27s turtles (Emydotdea blandingi Holbrook), and smooth soft-shells (Apalone mutica LeSueur), appeared to be most affected by modification. Turtle species richness was lower in Red Rock Reservoir than in the Des Moines River, possibly due to the great fluctuation in the water level of the reservoir

    Effect of an electric field on an intermittent granular flow

    Full text link
    Granular gravity driven flows of glass beads have been observed in a silo with a flat bottom. A DC high electric field has been applied perpendicularly to the silo to tune the cohesion. The outlet mass flow has been measured. An image subtraction technique has been applied to visualize the flow geometry and a spatiotemporal analysis of the flow dynamics has been performed. The outlet mass flow is independent of voltage, but a transition from funnel flow to rathole flow is observed. This transition is of probabilistic nature and an intermediate situation exists between the funnel and the rathole situations. At a given voltage, two kinds of flow dynamics can occur : a continuous flow or an intermittent flow. The electric field increases the probability to observe an intermittent flow.Comment: Accepted for publication in PRE on Apr 9, 201

    PHP44 Public Financing of Medicines in Portugal (2007-2011): Accessibility to Medicinal Products with New Molecules or New Therapeutic Indications

    Get PDF
    corecore