125 research outputs found

    Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices

    Full text link
    Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - susceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.Comment: Accepted Europhysics Letter

    1D Quantum transport in the even-chain spin-ladder compound Sr2.5Ca11.5Cu24O41 and YBa2Cu4O8

    Full text link
    The temperature dependence of the resistivity r(T) of the novel Sr2.5Ca11.5Cu24O41 ladder compound under hydrostatic pressure of up to 8 GPa has been explained by assuming that the relevant length scale for electrical transport is given by the magnetic correlation length related to the opening of a spin-gap in a 1D even-chain spin-ladder (1D-SL). The pressure dependence of the gap was extracted by applying this model to r(T) data obtained at different pressures. The r(T) dependence of the underdoped cuprate YBa2Cu4O8 demonstrates a remarkable scaling with the r(T) of the 1D-SL compound Sr2.5Ca11.5Cu24O41. This scaling implies that underdoped cuprates at Tc < T < T* are in the 1D regime and their pseudo-gap below T* is the spin-gap in the even-chain 1D-SL formed at T < T* in these materials.Comment: 10 pages, all PDF, contribution to Europhys.Lett.

    Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3

    Full text link
    Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10) . Maxwell relation is employed to estimate the change in magnetic entropy. At Curie temperature TC, 83.5 K, the change in magnetic entropy discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve Delta S vs T, the refrigeration capacity is calculated at TC, 83.5 K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as in magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10.Comment: Accepted (Journal of Applied Physics) (In press

    Dynamic response of exchange bias in graphene nanoribbons

    Full text link
    The dynamics of magnetic hysteresis, including the training effect and the field sweep rate dependence of the exchange bias, is experimentally investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training effect is present over a large number of cycles. This is reflected in a gradual decrease of the exchange bias with the sequential field cycling. However, at high field sweep rate above 0.5 T/min, the training effect is not prominent. With the increase in field sweep rate, the average value of exchange bias field grows and is found to follow power law behavior. The response of the exchange bias field to the field sweep rate variation is linked to the difference in the time it takes to perform a hysteresis loop measurement compared with the relaxation time of the anti-ferromagnetically aligned spins. The present results may broaden our current understanding of magnetism of GNRs and would be helpful in establishing the GNRs based spintronic devices.Comment: Accepted Applied Physics Letters (In press

    Flux Jumps Driven by a Pulsed Magnetic Field

    Full text link
    The understanding of flux jumps in the high temperature superconductors is of importance since the occurrence of these jumps may limit the perspectives of the practical use of these materials. In this work we present the experimental study of the role of heavy ion irradiation in stabilizing the HTSC against flux jumps by comparing un-irradiated and 7.5 10^10 Kr-ion/cm2 irradiated (YxTm1-x)Ba2Cu3O7 single crystals. Using pulsed field magnetization measurements, we have applied a broad range of field sweep rates from 0.1T/s up to 1800 T/s to investigate the behavior of the flux jumps. The observed flux jumps, which may be attributed to thermal instabilities, are incomplete and have different amplitudes. The flux jumps strongly depend on the magnetic field, on the magneto-thermal history of the sample, on the magnetic field sweep rate, on the critical current density jc, on the temperature and on the thermal contact with the bath in which the sample is immersed.Comment: 5 pages, PDF-fil

    Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3

    Full text link
    We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (~ 250 kOe) is found to be reduced in comparison with that of bulk PCMO (~300 kOe). With increasing temperature, the critical magnetic field required to 'melt' the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications
    corecore