558 research outputs found

    Jet shapes in ep collisions at HERA

    Get PDF
    New measurements of the jet shape in ep collisions at HERA using the k_T-cluster jet algorithm are presented.Comment: 7 pages, 3 figures; plenary talk given at the 3rd UK Phenomenology Workshop on HERA Physics, Durham, UK, September 199

    Soil apparent electrical conductivity and geographically weighted regression for mapping soil

    Get PDF
    To resolve the spatial variation in soil properties intensively is expensive, but such knowledge is essential to manage the soil better and to achieve greater economic and environmental benefits. The objective of this study was to determine whether the soil apparent electrical conductivity (ECa), alone or combined with other variables, is a useful alternative for providing detailed information on the soil in the Extremadura region of Spain. Apparent soil electrical conductivity was measured and geographically weighted regression was used to characterize the spatial variation in soil properties, which in turn can be used for soil management. This study shows that soil cation exchange capacity, calcium content, clay percentage and pH have a relatively strong spatial correlation with ECa in the soil of the study area

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at √s=8 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at √s=8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ'ℓ' (ℓ=μ, e), ℓℓqq-, ℓνqq- and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓqq-, ℓνqq-, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimensionWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Roma-nia; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Com-pute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Ac-tions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aris-teia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Lever-hulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) aneplad BNL (USA) and in the Tier-2 facilities worldwid

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at √ s = 8 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThis paper reports inclusive and differential measurements of the t ¯t charge asymmetry AC in 20.3 fb−1 of √s = 8 TeV pp collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the t ¯t system. The t ¯t pairs are selected in the single-lepton channels (e or μ) with at least four jets, and a likelihood fit is used to reconstruct the t ¯t event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive t ¯t charge asymmetry is measured to be AC = 0.009 ± 0.005 (stat. + syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard ModelWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF,Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR,MPOCR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/ IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF,United States ofAmerica. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario InnovationTrust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLASTier- 1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid

    Production of Z0 bosons in elastic and quasi-elastic ep collisions at HERA

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe production of Z0 bosons in the reaction ep →eZ0 p(∗), where p(∗) stands for a proton or a lowmass nucleon resonance, has been studied in ep collisions at HERA using the ZEUS detector. The analysis is based on a data sample collected between 1996 and 2007, amounting to 496 pb−1 of integrated luminosity. The Z0 was measured in the hadronic decay mode. The elasticity of the events was ensured by a cut on ηmax < 3.0, where ηmax is the maximum pseudorapidity of energy deposits in the calorimeter defined with respect to the proton beam direction. A signal was observed at the Z0 mass. The cross section of the reaction ep → eZ0 p(∗) was measured to be σ(ep → eZ0 p(∗)) =0.13 ± 0.06(stat.) ± 0.01(syst.) pb, in agreement with the Standard Model prediction of 0.16 pb. This is the first measurement of Z0 production in ep collisionsWe appreciate the contributions to the construction and maintenance of the ZEUS detector of many people who are not listed as authors. The HERA machine group and the DESY computing staff are especially acknowledged for their success in providing excellent operation of the collider and the data-analysis environment. We thank the DESY directorate for their strong support and encouragemen

    Measurements of fiducial cross-sections for t t ̅ production with one or two additional b-jets in pp collisions at √s = 8 TeV using the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMFiducial cross-sections for t ¯t production with one or two additional b-jets are reported, using an integrated luminosity of 20.3 fb−1 of proton–proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for t ¯t events with at least one additional b-jet is measured to be 950 ± 70 (stat.) +240 −190 (syst.) fb in the lepton-plus-jets channel and 50 ± 10 (stat.) +15 −10 (syst.) fb in the eμ channel. The cross-section times branching ratio for events with at least two additional b-jets is measured to be 19.3 ± 3.5 (stat.) ± 5.7 (syst.) fb in the dilepton channel (eμ,μμ, and ee) using a method based on tight selection criteria, and 13.5 ± 3.3 (stat.) ± 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ± 0.33 (stat.) ± 0.28 (syst.)% for the ratio of t ¯t production with two additional b-jets to t ¯t production with any two additional jets. All measurements are in good agreement with recent theory predictionsWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR, MPOCR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/ IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR;MESTD, Serbia; MSSR, Slovakia; ARRS andMIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario InnovationTrust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk+éodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid

    Search for the Higgs boson decays H → ee and H → eμ in pp collisions at √s = 13 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiera, y los autores pertenecientes a la UAMSearches for the Higgs boson decays H→eeand H→eμare performed using data corresponding to an integrated luminosity of 139 fb−1collected with the ATLAS detector in ppcollisions at √s=13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction β(H→ee)is 3.6 ×10−4(3.5 ×10−4) and on β(H→eμ)is 6.2 ×10−5(5.9 ×10−5). These results represent improvements by factors of about five and six on the previous best limits on β(H→ee)and β(H→eμ)respectivelyWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdo

    Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton + jets final state with ATLAS

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA measurement is presented of the t¯t inclusive production cross section in pp collisions at a center-of-mass energy of √s=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton + jets final state using a data set corresponding to an integrated luminosity of 20.3 fb−1. The cross section was obtained using a likelihood discriminant fit and b-jet identification was used to improve the signal-to-background ratio. The inclusive t¯t production cross section was measured to be 260+-1 (stat)+22 −23 (stat)+- (lumi)+- 4(beam) pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 253 +13 −15 pb. The t¯t → (e, μ) + jets production cross section in the fiducial region determined by the detector acceptance is also reportedWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, IGF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (USA) and in the Tier-2 facilities worldwid

    Variabilidad espacial y temporal del vigor vegetativo en viñedo sin restricciones hídricas en la demanda evapotranspirativa

    Get PDF
    Aunque generalmente se asume que la respuesta de un cultivo a la dosis de riego seleccionada es homogénea en la totalidad del área cultivada, en la mayoría de los casos esto no se corresponde con la realidad. En este trabajo se presenta un estudio de la variabilidad espacial y temporal del vigor vegetativo en el cultivo del viñedo, mediante el uso de índices de vegetación (NDVI) y la elaboración de los correspondientes mapas estadísticos. El ensayo ha sido realizado en un viñedo experimental de cultivar Tempranillo (Vitis vinífera L.), donde se compararon cuatro bloques aleatorios con un tratamiento de riego al 100% de la demanda evapotranspirativa (ETc) del cultivo. Durante la fase de maduración, se realizaron semanalmente mapas de índices de vegetación mediante el uso de sensores multiespectrales cercanos, montados sobre vehículos terrestres. Se observó que la respuesta en el desarrollo vegetativo no mantuvo una homogeneidad espacio – temporal en las cuatro zonas de estudio, a pesar de haber recibido las mismas prácticas culturales. La utilización de este tipo de herramientas, sensores de vegetación y estadística inferencial, permite detectar zonas diferenciadas en el desarrollo vegetativo, pudiendo ser utilizado para la toma de decisiones sobre el manejo del cultivo, tales como el escalonamiento de la cosecha o la aplicación tanto de abonos como de fitosanitarios, en función del factor que produce dicho descenso de vegetación

    Micro-Terroir

    Get PDF
    El concepto de terroir en el vino está basado en la observación de que diferentes regiones, viñedos o secciones dentro del mismo viñedo, pueden producir vinos con identidades propias y muy diferentes entre sí. Este concepto se cristalizó con el fin de describir los aspectos únicos de un lugar particular (suelo, topografía y clima) que influyen y forman el vino que nace a partir de él. Para una misma posición geográfica, podemos pensar que factores tales como el suelo y la topografía son fijos, en el espacio y en el tiempo, sin embargo las plantas del cultivo de viñedo presentan microvariaciones locales con diversas respuestas adaptativas. En efecto, dentro de un mismo viñedo, aéreas aparentemente uniformes desde un punto de vista pedológico y topográfico presentan plantas con vigores vegetativos totalmente distintos, considerando todos los factores fijos. Estos micro – terroirs vegetativos proporcionan una diferenciación en la maduración de la uva, creando así una variación espacial y temporal en la calidad de la misma. Considerando los demás factores fijos y, partiendo del principio de que la variación espacial y temporal en el vigor vegetativo de una planta es un indicativo de su capacidad productiva, así como del potencial cualitativo del fruto, fueron controladas 80 hectáreas de viñedo mediante un sensor de vegetación. La base de datos, espacial y temporal, obtenida y posteriormente analizada por componentes principales, permitió elaborar zonas homogéneas de tratamiento que denominamos micro – terroirs. Como resultado, se encontró que existe una variabilidad espacial y temporal en las regiones aparentemente uniformes en términos pedológicos y topográficos, lo que sugiere una capacidad de adaptación genética que no siempre es fácil de tener en cuenta. La capacidad de monitorizar la variación espacial y temporal del vigor vegetativo de la vid, permitirá gestionar diferenciadamente las unidades geográficas distintas, desde el punto de vista de la calidad del vino
    corecore