103 research outputs found
Approaching Petavolts per meter plasmonics using structured semiconductors
A new class of strongly excited plasmonic modes that open access to
unprecedented Petavolts per meter electromagnetic fields promise wide-ranging,
transformative impact. These modes are constituted by large amplitude
oscillations of the ultradense, delocalized free electron Fermi gas which is
inherent in conductive media. Here structured semiconductors with appropriate
concentration of n-type dopant are introduced to tune the properties of the
Fermi gas for matched excitation of an electrostatic, surface "crunch-in"
plasmon using readily available electron beams of ten micron overall dimensions
and hundreds of picoCoulomb charge launched inside a tube. Strong excitation
made possible by matching results in relativistic oscillations of the Fermi
electron gas and uncovers unique phenomena. Relativistically induced ballistic
electron transport comes about due to relativistic multifold increase in the
mean free path. Acquired ballistic transport also leads to unconventional heat
deposition beyond the Ohm's law. This explains the absence of observed damage
or solid-plasma formation in experiments on interaction of conductive samples
with electron bunches shorter than . Furthermore,
relativistic momentum leads to copious tunneling of electron gas allowing it to
traverse the surface and crunch inside the tube. Relativistic effects along
with large, localized variation of Fermi gas density underlying these modes
necessitate the kinetic approach coupled with particle-in-cell simulations.
Experimental verification of acceleration and focusing of electron beams
modeled here using tens of Gigavolts per meter fields excited in semiconductors
with free electron density will pave the way for Petavolts
per meter plasmonics.Comment: 16 pages, 10 figure
From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates
We investigate the spreading of 4He droplets on alkali surfaces at zero
temperature, within the frame of Finite Range Density Functional theory. The
equilibrium configurations of several 4He_N clusters and their asymptotic trend
with increasing particle number N, which can be traced to the wetting behavior
of the quantum fluid, are examined for nanoscopic droplets. We discuss the size
effects, inferring that the asymptotic properties of large droplets correspond
to those of the prewetting film
Mode-coupling theory of the stress-tensor autocorrelation function of a dense binary fluid mixture
We present a generalized mode-coupling theory for a dense binary fluid
mixture. The theory is used to calculate molecular-scale renormalizations to
the stress-tensor autocorrelation function (STAF) and to the long-wavelength
zero-frequency shear viscosity. As in the case of a dense simple fluid, we find
that the STAF appears to decay as over an intermediate range of
time. The coefficient of this long-time tail is more than two orders of
magnitude larger than that obtained from conventional mode-coupling theory. Our
study focuses on the effect of compositional disorder on the decay of the STAF
in a dense mixture.Comment: Published; withdrawn since ordering in the archive gives misleading
impression of new publicatio
Short-wavelength collective modes in a binary hard-sphere mixture
We use hard-sphere generalized hydrodynamic equations to discuss the extended
hydrodynamic modes of a binary mixture. The theory presented here is analytic
and it provides us with a simple description of the collective excitations of a
dense binary mixture at molecular length scales. The behavior we predict is in
qualitative agreement with molecular-dynamics results for soft-sphere mixtures.
This study provides some insight into the role of compositional disorder in
forming glassy configurations.Comment: Published; withdrawn since already published. Ordering in the archive
gives misleading impression of new publicatio
Nucleation and Bulk Crystallization in Binary Phase Field Theory
We present a phase field theory for binary crystal nucleation. In the
one-component limit, quantitative agreement is achieved with computer
simulations (Lennard-Jones system) and experiments (ice-water system) using
model parameters evaluated from the free energy and thickness of the interface.
The critical undercoolings predicted for Cu-Ni alloys accord with the
measurements, and indicate homogeneous nucleation. The Kolmogorov exponents
deduced for dendritic solidification and for "soft-impingement" of particles
via diffusion fields are consistent with experiment.Comment: 4 pages, 4 figures, accepted to PR
Prewetting transitions of Ar and Ne on alkali metal surfaces
We have studied by means of Density-Functional calculations the wetting
properties of Ar and Ne adsorbed on a plane whose adsorption properties
simulate the Li and Na surfaces. We use reliable ab-initio potentials to model
the gas-substrate interactions. Evidence for prewetting transitions is found
for all the systems investigated and their wetting phase diagrams are
calculated.Comment: 6 pages, 8 figures, submitted for publication in Phys. Rev.
Energy landscape - a key concept for the dynamics of glasses and liquids
There is a growing belief that the mode coupling theory is the proper
microscopic theory for the dynamics of the undercooled liquid above a critical
temperature T_c. In addition, there is some evidence that the system leaves the
saddlepoints of the energy landscape to settle in the valleys at this critical
temperature. Finally, there is a microscopic theory for the entropy at the
calorimetric glass transition T_g by Mezard and Parisi, which allows to
calculate the Kauzmann temperature from the atomic pair potentials.
The dynamics of the frozen glass phase is at present limited to
phenomenological models. In the spirit of the energy landscape concept, one
considers an ensemble of independent asymmetric double-well potentials with a
wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips
model). The model gives an excellent description of the relaxation of glasses
up to about T_g/4. Above this temperature, the interaction between different
relaxation centers begins to play a role. One can show that the interaction
reduces the number of relaxation centers needed to bring the shear modulus down
to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in
Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002,
Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account;
final version 4 will be published in J.Phys.: Condens.Matte
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
- …