103 research outputs found

    Approaching Petavolts per meter plasmonics using structured semiconductors

    Full text link
    A new class of strongly excited plasmonic modes that open access to unprecedented Petavolts per meter electromagnetic fields promise wide-ranging, transformative impact. These modes are constituted by large amplitude oscillations of the ultradense, delocalized free electron Fermi gas which is inherent in conductive media. Here structured semiconductors with appropriate concentration of n-type dopant are introduced to tune the properties of the Fermi gas for matched excitation of an electrostatic, surface "crunch-in" plasmon using readily available electron beams of ten micron overall dimensions and hundreds of picoCoulomb charge launched inside a tube. Strong excitation made possible by matching results in relativistic oscillations of the Fermi electron gas and uncovers unique phenomena. Relativistically induced ballistic electron transport comes about due to relativistic multifold increase in the mean free path. Acquired ballistic transport also leads to unconventional heat deposition beyond the Ohm's law. This explains the absence of observed damage or solid-plasma formation in experiments on interaction of conductive samples with electron bunches shorter than 1013seconds\rm 10^{-13} seconds. Furthermore, relativistic momentum leads to copious tunneling of electron gas allowing it to traverse the surface and crunch inside the tube. Relativistic effects along with large, localized variation of Fermi gas density underlying these modes necessitate the kinetic approach coupled with particle-in-cell simulations. Experimental verification of acceleration and focusing of electron beams modeled here using tens of Gigavolts per meter fields excited in semiconductors with 1018cm3\rm 10^{18}cm^{-3} free electron density will pave the way for Petavolts per meter plasmonics.Comment: 16 pages, 10 figure

    From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates

    Get PDF
    We investigate the spreading of 4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The equilibrium configurations of several 4He_N clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects, inferring that the asymptotic properties of large droplets correspond to those of the prewetting film

    Mode-coupling theory of the stress-tensor autocorrelation function of a dense binary fluid mixture

    Get PDF
    We present a generalized mode-coupling theory for a dense binary fluid mixture. The theory is used to calculate molecular-scale renormalizations to the stress-tensor autocorrelation function (STAF) and to the long-wavelength zero-frequency shear viscosity. As in the case of a dense simple fluid, we find that the STAF appears to decay as t3/2t^{-3/2} over an intermediate range of time. The coefficient of this long-time tail is more than two orders of magnitude larger than that obtained from conventional mode-coupling theory. Our study focuses on the effect of compositional disorder on the decay of the STAF in a dense mixture.Comment: Published; withdrawn since ordering in the archive gives misleading impression of new publicatio

    Short-wavelength collective modes in a binary hard-sphere mixture

    Full text link
    We use hard-sphere generalized hydrodynamic equations to discuss the extended hydrodynamic modes of a binary mixture. The theory presented here is analytic and it provides us with a simple description of the collective excitations of a dense binary mixture at molecular length scales. The behavior we predict is in qualitative agreement with molecular-dynamics results for soft-sphere mixtures. This study provides some insight into the role of compositional disorder in forming glassy configurations.Comment: Published; withdrawn since already published. Ordering in the archive gives misleading impression of new publicatio

    Nucleation and Bulk Crystallization in Binary Phase Field Theory

    Full text link
    We present a phase field theory for binary crystal nucleation. In the one-component limit, quantitative agreement is achieved with computer simulations (Lennard-Jones system) and experiments (ice-water system) using model parameters evaluated from the free energy and thickness of the interface. The critical undercoolings predicted for Cu-Ni alloys accord with the measurements, and indicate homogeneous nucleation. The Kolmogorov exponents deduced for dendritic solidification and for "soft-impingement" of particles via diffusion fields are consistent with experiment.Comment: 4 pages, 4 figures, accepted to PR

    Prewetting transitions of Ar and Ne on alkali metal surfaces

    Full text link
    We have studied by means of Density-Functional calculations the wetting properties of Ar and Ne adsorbed on a plane whose adsorption properties simulate the Li and Na surfaces. We use reliable ab-initio potentials to model the gas-substrate interactions. Evidence for prewetting transitions is found for all the systems investigated and their wetting phase diagrams are calculated.Comment: 6 pages, 8 figures, submitted for publication in Phys. Rev.

    Energy landscape - a key concept for the dynamics of glasses and liquids

    Full text link
    There is a growing belief that the mode coupling theory is the proper microscopic theory for the dynamics of the undercooled liquid above a critical temperature T_c. In addition, there is some evidence that the system leaves the saddlepoints of the energy landscape to settle in the valleys at this critical temperature. Finally, there is a microscopic theory for the entropy at the calorimetric glass transition T_g by Mezard and Parisi, which allows to calculate the Kauzmann temperature from the atomic pair potentials. The dynamics of the frozen glass phase is at present limited to phenomenological models. In the spirit of the energy landscape concept, one considers an ensemble of independent asymmetric double-well potentials with a wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips model). The model gives an excellent description of the relaxation of glasses up to about T_g/4. Above this temperature, the interaction between different relaxation centers begins to play a role. One can show that the interaction reduces the number of relaxation centers needed to bring the shear modulus down to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002, Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account; final version 4 will be published in J.Phys.: Condens.Matte

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
    corecore