19,854 research outputs found
Integrability of a Generalized Ito System: the Painleve Test
It is shown that a generalized Ito system of four coupled nonlinear evolution
equations passes the Painleve test for integrability in five distinct cases, of
which two were introduced recently by Tam, Hu and Wang. A conjecture is
formulated on integrability of a vector generalization of the Ito system.Comment: LaTeX, 5 page
A system for synthetic vision and augmented reality in future flight decks
Rockwell Science Center is investigating novel human-computer interaction techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays that provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information. Orientation of the camera is obtained from an inclinometer and a magnetometer; position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual cues with database features. This technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background with an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer
Global Behavior of the Douglas-Rachford Method for a Nonconvex Feasibility Problem
In recent times the Douglas-Rachford algorithm has been observed empirically
to solve a variety of nonconvex feasibility problems including those of a
combinatorial nature. For many of these problems current theory is not
sufficient to explain this observed success and is mainly concerned with
questions of local convergence. In this paper we analyze global behavior of the
method for finding a point in the intersection of a half-space and a
potentially non-convex set which is assumed to satisfy a well-quasi-ordering
property or a property weaker than compactness. In particular, the special case
in which the second set is finite is covered by our framework and provides a
prototypical setting for combinatorial optimization problems
A feasibility approach for constructing combinatorial designs of circulant type
In this work, we propose an optimization approach for constructing various
classes of circulant combinatorial designs that can be defined in terms of
autocorrelations. The problem is formulated as a so-called feasibility problem
having three sets, to which the Douglas-Rachford projection algorithm is
applied. The approach is illustrated on three different classes of circulant
combinatorial designs: circulant weighing matrices, D-optimal matrices, and
Hadamard matrices with two circulant cores. Furthermore, we explicitly
construct two new circulant weighing matrices, a and a
, whose existence was previously marked as unresolved in the most
recent version of Strassler's table
Axion Dark Matter and Cosmological Parameters
We observe that photon cooling after big bang nucleosynthesis (BBN) but
before recombination can remove the conflict between the observed and
theoretically predicted value of the primordial abundance of Li. Such
cooling is ordinarily difficult to achieve. However, the recent realization
that dark matter axions form a Bose-Einstein condensate (BEC) provides a
possible mechanism, because the much colder axions may reach thermal contact
with the photons. This proposal predicts a high effective number of neutrinos
as measured by the cosmic microwave anisotropy spectrum.Comment: 4 pages, one figure. Version to appear in Phys. Rev. Lett.,
incorporating useful comments by the referees and emphasizing that photon
cooling by axion BEC is a possibility, not a certaint
- …