10,418 research outputs found

    Changes and influences on adolescent drinking in New Zealand

    Get PDF
    falseWellington, New Zealan

    Stable and Metastable InGaAs/GaAs Island Shapes and Surfactantlike Suppression of the Wetting Transformation

    Get PDF
    Contrasting behaviors are observed in InGaAs/GaAs island formation during vapor phase epitaxy: variation of group V partial pressures gives different critical thicknesses for the onset of the Stranski-Krastanow transformation, surface coverages, ratios between coherent and incoherent islands, and dissimilar morphologies upon annealing. The latter experiments show that small lens-shaped islands can be found in equilibrium if InGaAs surface energies are minimized, leading to the conclusion that AsH3 can raise surface energies and act as an impurity-free "morphactant.

    The Formation of a Realistic Disk Galaxy in Lambda Dominated Cosmologies

    Full text link
    We simulate the formation of a realistic disk galaxy within the hierarchical scenario of structure formation and study its internal properties to the present epoch. We compare results from a LambdaCDM simulation with a LambdaWDM (2keV) simulation that forms significantly less small scale structure. We show how high mass and force resolution in both the gas and dark matter components play an important role in solving the angular momentum catastrophe claimed from previous simulations of galaxy formation within the hierarchical framework. The stellar material in the disk component has a final specific angular momentum equal to 40% and 90% of that of the dark halo in the LambdaCDM and LambdaWDM models respectively. The LambdaWDM galaxy has a drastically reduced satellite population and a negligible stellar spheroidal component. Encounters with satellites play only a minor role in disturbing the disk. Satellites possess a variety of star formation histories linked to mergers and pericentric passages along their orbit around the primary galaxy. In both cosmologies, the galactic halo retains most of the baryons accreted and builds up a hot gas phase with a substantial X-ray emission. Therefore, while we have been successful in creating a realistic stellar disk in a massive galaxy within the LambdaCDM scenario, energy injection emerges as necessary ingredient to reduce the baryon fraction in galactic halos, independent of the cosmology adopted. (abridged)Comment: ApJ in press. Images and movies at http://hpcc.astro.washington.edu/faculty/fabio/galform.html Significantly expanded revised version. (9 pages vs the original 4

    Dynamical Determination of the Metric Signature in Spacetime of Nontrivial Topology

    Full text link
    The formalism of Greensite for treating the spacetime signature as a dynamical degree of freedom induced by quantum fields is considered for spacetimes with nontrivial topology of the kind RD1×T1{\bf R}^{D-1} \times {\bf T}^1, for varying DD. It is shown that a dynamical origin for the Lorentzian signature is possible in the five-dimensional space R4×T1{\bf R}^4 \times {\bf T}^1 with small torus radius (periodic boundary conditions), as well as in four-dimensional space with trivial topology. Hence, the possibility exists that the early universe might have been of the Kaluza-Klein type, \ie multidimensional and of Lorentzian signature.Comment: 10 pages, LaTeX file, 4 figure

    Vacuum destabilization from Kaluza-Klein modes in an inflating brane

    Full text link
    We discuss the effects from the Kaluza-Klein modes in the brane world scenario when an interaction between bulk and brane fields is included. We focus on the bulk inflaton model, where a bulk field Ψ\Psi drives inflation in an almost AdS5AdS_5 bulk bounded by an inflating brane. We couple Ψ\Psi to a brane scalar field ϕ\phi representing matter on the brane. The bulk field Ψ\Psi is assumed to have a light mode, whose mass depends on the expectation value of ϕ\phi. To estimate the effects from the KK modes, we compute the 1-loop effective potential V_\eff(\phi). With no tuning of the parameters of the model, the vacuum becomes (meta)stable -- V_\eff(\phi) develops a true vacuum at a nonzero ϕ\phi. In the true vacuum, the light mode of Ψ\Psi becomes heavy, degenerates with the KK modes and decays. We comment on some implications for the bulk inflaton model. Also, we clarify some aspects of the renormalization procedure in the thin wall approximation, and show that the fluctuations in the bulk and on the brane are closely related.Comment: 15 pages, 2 eps figures. Notation improved, references adde

    Evaluation of the Casimir Force for a Dielectric-diamagnetic Cylinder with Light Velocity Conservation Condition and the Analogue of Sellmeir's Dispersion Law

    Full text link
    We study the Casimir pressure for a dielectric-diamagnetic cylinder subject to light velocity conservation and with a dispersion law analogous to Sellmeir's rule. Similarities to and differences from the spherical case are pointed out.Comment: 19 pages Latex, no figures; discussion expanded. To appear in Physica Script

    Spectroscopic variability of two Oe stars

    Full text link
    The Oe stars HD45314 and HD60848 have recently been found to exhibit very different X-ray properties: whilst HD60848 has an X-ray spectrum and emission level typical of most OB stars, HD45314 features a much harder and brighter X-ray emission, making it a so-called gamma Cas analogue. Monitoring the optical spectra could provide hints towards the origin of these very different behaviours. We analyse a large set of spectroscopic observations of HD45314 and HD60848, extending over 20 years. We further attempt to fit the H-alpha line profiles of both stars with a simple model of emission line formation in a Keplerian disk. Strong variations in the strengths of the H-alpha, H-beta, and He I 5876 emission lines are observed for both stars. In the case of HD60848, we find a time lag between the variations in the equivalent widths of these lines. The emission lines are double peaked with nearly identical strengths of the violet and red peaks. The H-alpha profile of this star can be successfully reproduced by our model of a disk seen under an inclination of 30 degrees. In the case of HD45314, the emission lines are highly asymmetric and display strong line profile variations. We find a major change in behaviour between the 2002 outburst and the one observed in 2013. This concerns both the relationship between the equivalent widths of the various lines and their morphologies at maximum strength (double-peaked in 2002 versus single-peaked in 2013). Our simple disk model fails to reproduce the observed H-alpha line profiles of HD45314. Our results further support the interpretation that Oe stars do have decretion disks similar to those of Be stars. Whilst the emission lines of HD60848 are explained by a disk with a Keplerian velocity field, the disk of HD45314 seems to have a significantly more complex velocity field that could be related to the phenomenon that produces its peculiar X-ray emission.Comment: Accepted for Publication in A&

    Casimir Forces for Robin Scalar Field on Cylindrical Shell in de Sitter Space

    Full text link
    The Casimir stress on a cylinderical shell in background of conformally flat space-time for massless scalar field is investigated. In the general case of Robin (mixed) boundary condition formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. The special case of the dS bulk is considered then different cosmological constants are assumed for the space inside and outside of the shell to have general results applicable to the case of cylindrical domain wall formations in the early universe.Comment: 10 pages, no figur

    Stress-energy tensor for a quantised bulk scalar field in the Randall-Sundrum brane model

    Full text link
    We calculate the vacuum expectation value of the stress-energy tensor for a quantised bulk scalar field in the Randall-Sundrum model, and discuss the consequences of its local behaviour for the self-consistency of the model. We find that, in general, the stress-energy tensor diverges in the vicinity of the branes. Our main conclusion is that the stress-energy tensor is sufficiently complicated that it has implications for the effective potential, or radion stabilisation, methods that have so far been used.Comment: 16 pages, 3 figures. Minor changes made and references added. To appear in Phys. Rev.
    corecore