146 research outputs found

    Models of Traumatic Cerebellar Injury

    Get PDF
    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.Published versio

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Full text link

    Method for morphophysiological study of specific pial microvessels

    No full text
    A method is described whereby specific segments of the pial vasculature of cats can be both physiologically and morphologically studied. This is accomplished by the insertion of a cranial window through which specific pial vessels can be visualized, illustrated, numbered in a simple sketch, and physiologically evaluated under both control and experimental conditions. Following these procedures, perfusion of aldehydes is initiated and the pia and associated vasculature are stripped from the cortical mantle. The thin velum of pia so obtained permits the direct visualization of the pial vasculature whose unchanged configuration can be matched to the appropriate previously sketched vessels whose individual physiological status is known. In turn these vessels are divided into alternate segments and are prepared for either scanning or transmission electron microscopy. The advantages of this methodology is exemplified by the fact that it provides the physiological status and morphological characteristics of the same microvascular segment. Although designed for the pial vasculature, this protocol may also prove of use in the study of other superficially coursing microvascular beds
    corecore