346 research outputs found
Lagging rural areas: detection, diagnosis and planning development
The overall objective of the present paper is to identify and analyse the territorial factors that influence the economy and demography of rural areas in Catalonia. The paper begins with a definition of the different rural typologies, and then proposes an innovative methodology combining tools from different disciplines, such as economics, statistics, geography and sociology. The methodology is applied to the 946 municipalities existing in Catalonia today, which visually results in a map of the region. The map obtained allows us to identify rural spaces throughout the territory – including metropolitan and peri-urban rural areas. The next step has been the analysis of the indicators of their socio-economic development contexts in order to identify their similarities and differences in terms of socioeconomic and territorial characteristics. As a result of applying this methodology, we can deepen our understanding of the factors behind lagging agricultural activity in rural spaces, as well as make progress in the identification of sustainable policies aimed at preventing the environmental, sociological and cultural losses linked to the abandonment of rural activities.Rural space, rural development, lagging rural economy, Community/Rural/Urban Development,
Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix
Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NiMnO phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content in the precursor
NiMnO phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
Magnetic relaxation measurements of exchange biased (Pt/Co) multilayers with perpendicular anisotropy
Magnetic relaxation measurements were carried out by magneto-optical Kerr
effect on exchange biased (Pt/Co)5/Pt/FeMn multilayers with perpendicular
anisotropy. In these films the coercivity and the exchange bias field vary with
Pt spacer thickness, and have a maximum for 0.2 nm. Hysteresis loops do not
reveal important differences between the reversal for ascending and descending
fields. Relaxation measurements were fitted using Fatuzzo's model, which
assumes that reversal occurs by domain nucleation and domain wall propagation.
For 2 nm thick Pt spacer (no exchange bias) the reversal is dominated by domain
wall propagation starting from a few nucleation centers. For 0.2 nm Pt spacer
(maximum exchange bias) the reversal is strongly dominated by nucleation, and
no differences between the behaviour of the ascending and descending branches
can be observed. For 0.4 nm Pt spacer (weaker exchange bias) the nucleation
density becomes less important, and the measurements reveal a much stronger
density of nucleation centers in the descending branch.Comment: Europhysical Journal B, in print DOI: 10.1140/epjb/e2005-00053-
Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants
This book chapter deals with the fundamental aspects of corrosion of magnesium based alloys in bodily fluids and reviews the various techniques that can be used to tune their degradation rate. The time-dependent evolution of their mechanical properties during the biodegradation process is also outlined
Recommended from our members
Strain-gradient effects in nanoscale-engineered magnetoelectric materials
Recommended from our members
Ductile bulk metallic glass by controlling structural heterogeneities
A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the Zr52.5Ti5Cu18Ni14.5Al10 BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed
Magnetic relaxation of exchange biased (Pt/Co) multilayers studied by time-resolved Kerr microscopy
Magnetization relaxation of exchange biased (Pt/Co)5/Pt/IrMn multilayers with
perpendicular anisotropy was investigated by time-resolved Kerr microscopy.
Magnetization reversal occurs by nucleation and domain wall propagation for
both descending and ascending applied fields, but a much larger nucleation
density is observed for the descending branch, where the field is applied
antiparallel to the exchange bias field direction. These results can be
explained by taking into account the presence of local inhomogeneities of the
exchange bias field.Comment: To appear in Physical Review B (October 2005
Ductile bulk metallic glass by controlling structural heterogeneities
A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the ZrTiCuNiAl BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed
- …