31 research outputs found

    Breath biomarkers in idiopathic pulmonary fibrosis:A systematic review 11 Medical and Health Sciences

    Get PDF
    Background: Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. Methods: MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. Results: Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (卤 SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 卤 5.5 ppb) than controls (4.4 卤 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. Conclusions: Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential

    Cloning and expression of the bovine intestinal alkaline phosphatase gene: biochemical characterization of the recombinant enzyme.

    No full text
    A complete genomic clone and a full-length cDNA coding for bovine intestinal alkaline phosphatase have been isolated and sequenced. The gene (5.4 kb) contains 11 exons separated by ten small introns at positions identical to those other members of the eukaryotic tissue-specific alkaline phosphatase family. In addition, 1.5 kb of upstream sequences contain putative regulatory elements showing sequence similarity to human and mouse intestinal alkaline phosphatase promoter sequences. To achieve recombinant bovine intestinal alkaline phosphatase expression, the coding region of the gene was subcloned into the pcDNA I eukaryotic expression vector and transfected into Chinese hamster ovary cells. Recombinant bovine intestinal alkaline phosphatase displays enzymatic properties comparable with those of purified native bovine intestinal alkaline phosphatase, a slightly increased thermal stability and, upon desialylation, it shows a homogeneous behaviour in agarose gel electrophoresis and isoelectric focusing. The availability of the recombinant bovine intestinal alkaline phosphatase and the elucidation of its primary sequence will help to accelerate our efforts to obtain the first crystallographic model of a eukaryotic alkaline phosphatase molecule
    corecore