14,826 research outputs found

    Cosmological Constraints from Moments of the Thermal Sunyaev-Zel'dovich Effect

    Full text link
    In this paper, we explain how moments of the thermal Sunyaev-Zel'dovich (tSZ) effect can constrain both cosmological parameters and the astrophysics of the intracluster medium (ICM). As the tSZ signal is strongly non-Gaussian, higher moments of tSZ maps contain useful information. We first calculate the dependence of the tSZ moments on cosmological parameters, finding that higher moments scale more steeply with sigma_8 and are sourced by more massive galaxy clusters. Taking advantage of the different dependence of the variance and skewness on cosmological and astrophysical parameters, we construct a statistic, ||/^1.4, which cancels much of the dependence on cosmology (i.e., sigma_8) yet remains sensitive to the astrophysics of intracluster gas (in particular, to the gas fraction in low-mass clusters). Constraining the ICM astrophysics using this statistic could break the well-known degeneracy between cosmology and gas physics in tSZ measurements, allowing for tight constraints on cosmological parameters. Although detailed simulations will be needed to fully characterize the accuracy of this technique, we provide a first application to data from the Atacama Cosmology Telescope and the South Pole Telescope. We estimate that a Planck-like full-sky tSZ map could achieve a <1% constraint on sigma_8 and a 1-sigma error on the sum of the neutrino masses that is comparable to the existing lower bound from oscillation measurements.Comment: 11 pages, 12 figures, to be submitted to Phys. Rev. D; v2: 14 pages, 16 figures, matches PRD accepted version (changes from v1 include additional calculations with primordial non-Gaussianity and a new appendix discussing the tSZ kurtosis

    Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    Get PDF
    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects

    Clathrate type 2 hydrate formation in vacuo under astrophysical conditions

    Get PDF
    The properties of clathrate hydrates were used to explain the complex and poorly understood physical processes taking place within cometary nuclei and other icy solar system bodies. Most of all the experiments previously conducted used starting compositions which would yield clathrate types I hydrates. The main criterion for type I vs. type II clathrate hydrate formation is the size of the guest molecule. The stoichiometry of the two structure types is also quite different. In addition, the larger molecules which would form type II clathrate hydrates typically have lower vapor pressures. The result of these considerations is that at temperatures where we identified clathrate formation (120-130 K), it is more likely that type II clathrate hydrates will form. We also formed clathrate II hydrates of methanol by direct vapor deposition in the temperature range 125-135 K

    Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive

    Get PDF
    Three weeks of summertime surface‐based chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000–1400 LT median values of observations to drive the model and by excluding short‐lived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site

    Comment on "Why is the DNA denaturation transition first order?"

    Get PDF
    In this comment we argue that while the conclusions in the original paper (Y. Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)) are correct for asymptotically long DNA chains, they do not apply to the chains used in typical experiments. In the added last paragraph, we point out that for real DNA the average distance between denatured loops is not of the order of the persistence length of a single-stranded chain but much larger. This corroborates our reasoning that the double helix between loops is quite rigid, and thereby our conclusion.Comment: 1 page, REVTeX. Last paragraph adde
    corecore