249 research outputs found
Protein fibrillogenesis model tracked by its intrinsic time-resolved emission spectra
The excited-state kinetics of the fluorescence of tyrosine in a de novo protein fibrillogenesis model was investigated as a potential tool for monitoring protein fibre formation and complexation with glucose (glycation). In stark contrast to insulin the time-resolved emission spectra (TRES) recorded over the period of 700 hours in buffered solutions of the model with and without glucose revealed no apparent changes in Tyr fluorescence responses. This indicates the stability of the model and provides a measurement-supported basis for its use as a reference material in fluorescence studies of protein aggregation
Impact of droughts on the carbon cycle in European vegetation : a probabilistic risk analysis using six vegetation models
Peer reviewedPublisher PD
Insulin aggregation tracked by its intrinsic TRES
Time-resolved emission spectra (TRES) have been used to detect conformational changes of
intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to
detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed
the existence of at least three fluorescent species undergoing dielectric relaxation and significant
spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic
TRES approach for insulin studies and for monitoring its stability during storage and aggregation
in insulin delivery devices
The expression of B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in cord blood of healthy neonates.
The aim of our study was to estimate both B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in umbilical cord blood of healthy neonates in comparison with peripheral blood of healthy adults. Thirty nine healthy full-term neonates from physiological single pregnancies and 27 healthy adults were included in the study. The expression of B7-H1 and B7-H4 was revealed using the immunofluorescence method. Statistical analysis was performed using a non-parametric test (Mann-Whitney U-Test). The percentages of BDCA-1+ dendritic cells with B7-H1 and B7-H4 expressions were significantly higher in peripheral blood of healthy adults (
Tyrosine photophysics during the early stages of β-amyloid aggregation leading to Alzheimer's
We have monitored the formation of toxic β-amyloid oligomers leading to Alzheimer's disease by detecting changes in the fluorescence decay of intrinsic tyrosine. A new approach based on the non-Debye model of fluorescence kinetics resolves the complexity of the underlying photophysics. The gradual disappearance of nonmonotonic fluorescence decay rates, at the early stages of aggregation as larger, tighter-packed oligomers are formed, is interpreted in terms of tyrosine-peptide dielectric relaxation influencing the decay. The results demonstrate the potential for a new type of fluorescence lifetime sensing based on dual excited-state/dielectric relaxation, with application across a broad range of biological molecules. The results also reconcile previously conflicting models of protein intrinsic fluorescence decay based on rotamers or dielectric relaxation by illustrating conditions under which both are manifest
On the use of core-shell type semiconductor nanocrystals as sensors
Here we describe progress towards our objective of non contact transition metal ion sensing. Semiconductor nanocrystals show complex photophysical properties and require a very careful setup of the measurement parameters. Under these conditions they allow for very high resolution sensing of ions
Recommended from our members
Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators
Bayesian Model Selection and Emulation for Protein Fluorescence
Fluorescence decay of amino acids in protein is a complex process for which multiple models have been proposed. Likelihood function evaluation for certain models can be computationally expensive, and as such surrogate models may be introduced to speed up inference. In this paper, Gaussian processes are implemented in likelihood estimation of a range of models defined by convolutions of an initial excitation input and a decay function using both synthetic and real world data. Parameter inference and model selection using the surrogate models are performed and compared against the exact results. Model selection when incorporating surrogate models into the inference process is shown to be consistent
Recommended from our members
The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
No-tillage is often suggested as a strategy to reduce greenhouse gas emissions. Modeling tillage effects on nitrous oxide (N2O) emissions is challenging and subject to great uncertainties as the processes producing the emissions are complex and strongly nonlinear. Previous findings have shown deviations between the LPJmL5.0-tillage model (LPJmL: Lund–Potsdam–Jena managed Land) and results from meta-analysis on global estimates of tillage effects on N2O emissions. Here we tested LPJmL5.0-tillage at four different experimental sites across Europe and the USA to verify whether deviations in N2O emissions under different tillage regimes result from a lack of detailed information on agricultural management, the representation of soil water dynamics or both. Model results were compared to observational data and outputs from field-scale DayCent model simulations. DayCent has been successfully applied for the simulation of N2O emissions and provides a richer database for comparison than noncontinuous measurements at experimental sites. We found that adding information on agricultural management improved the simulation of tillage effects on N2O emissions in LPJmL. We also found that LPJmL overestimated N2O emissions and the effects of no-tillage on N2O emissions, whereas DayCent tended to underestimate the emissions of no-tillage treatments. LPJmL showed a general bias to overestimate soil moisture content. Modifications of hydraulic properties in LPJmL in order to match properties assumed in DayCent, as well as of the parameters related to residue cover, improved the overall simulation of soil water and N2O emissions simulated under tillage and no-tillage separately. However, the effects of no-tillage (shifting from tillage to no-tillage) did not improve. Advancing the current state of information on agricultural management and improvements in soil moisture highlights the potential to improve LPJmL5.0-tillage and global estimates of tillage effects on N2O emissions
Impact of the flavonoid quercetin on beta-amyloid aggregation revealed by intrinsic fluorescence
We report the effects of quercetin, a flavonoid present in human diet, on early stage beta-amyloid (Aβ) aggregation – a seminal event in Alzheimer’s disease. Molecular level changes in Aβ arrangements are monitored by time-resolved emission spectral (TRES) measurements of the fluorescence of Aβ’s single tyrosine intrinsic fluorophore (Tyr). The results suggest that quercetin binds beta-amyloid oligomers at early stages of their aggregation, which leads to the formation of modified oligomers and hinders the creation of beta-sheet structures, potentially preventing the onset of Alzheimer’s disease
- …