113 research outputs found

    Bullet-induced synovitis as a cause of secondary osteoarthritis of the hip joint: A case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With increasing prevalence of gunshot injuries we are seeing more patients with retained bullet fragments lodged in their bodies. Embedded lead bullets are usually considered inert after their kinetic energy has dissipated hence these are not removed routinely. However, exposure of any foreign body to synovial fluid may lead to rapid degradation and hence result in systemic absorption, causing local and systemic symptoms. We present the case of a thirty year old man who came to our out patient department with a history of progressive, severe hip pain ten years after a gun shot injury to his right hip.</p> <p>Conclusion</p> <p>The common belief that intraarticular bullets should not be removed has no benefit and may result in unwanted long term complications.</p

    Enhanced Processing of Threat Stimuli under Limited Attentional Resources

    Get PDF
    The ability to process stimuli that convey potential threat, under conditions of limited attentional resources, confers adaptive advantages. This study examined the neurobiology underpinnings of this capacity. Employing an attentional blink paradigm, in conjunction with functional magnetic resonance imaging, we manipulated the salience of the second of 2 face target stimuli (T2), by varying emotionality. Behaviorally, fearful T2 faces were identified significantly more than neutral faces. Activity in fusiform face area increased with correct identification of T2 faces. Enhanced activity in rostral anterior cingulate cortex (rACC) accounted for the benefit in detection of fearful stimuli reflected in a significant interaction between target valence and correct identification. Thus, under conditions of limited attention resources activation in rACC correlated with enhanced processing of emotional stimuli. We suggest that these data support a model in which a prefrontal β€œgate” mechanism controls conscious access of emotional information under conditions of limited attentional resources

    Striatal sensitivity to personal responsibility in a regret-based decision-making task

    Get PDF
    Regret and relief are complex emotional states associated with the counterfactual processing of nonobtained outcomes in a decision-making situation. In the "actor effect," a sense of agency and personal responsibility is thought to heighten these emotions. Using fMRI, we scanned volunteers (n = 22) as they played a task involving choices between two wheel-of-fortune gambles. We examined how neural responses to counterfactual outcomes were modulated by giving subjects the opportunity to change their minds, as a manipulation of personal responsibility. Satisfaction ratings to the outcomes were highly sensitive to the difference between the obtained and nonobtained outcome, and ratings following losses were lower on trials with the opportunity to change one's mind. Outcome-related activity in the striatum and orbitofrontal cortex was positively related to the satisfaction ratings. The striatal response was modulated by the agency manipulation: Following losses, the striatal signal was significantly lower when the subject had the opportunity to change his/her mind. These results support the involvement of frontostriatal mechanisms in counterfactual thinking and highlight the sensitivity of the striatum to the effects of personal responsibility.</p

    Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    Get PDF
    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. Objectives We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. Methods The dietary intervention of acute dietary phenylalanine and tyrosine depletion (APTD) was adopted to study the effects of reduced global dopamine function on action control. Participants were randomly assigned to either the APTD or placebo group (ns = 14) to allow for a between-subjects comparison of performance on a novel three-stage experimental paradigm. In the initial learning phase, participants learned to respond to different stimuli in order to gain rewarding outcomes. Subsequently, an outcome-devaluation test and a slips-of-action test were conducted to assess whether participants were able to flexibly adjust their behaviour to changes in the desirability of the outcomes. Results APTD did not prevent stimulus-response learning, nor did we find evidence for impaired response-outcome learning in the subsequent outcome-devaluation test. However, when goal-directed and habitual systems competed for control in the slips-of-action test, APTD tipped the balance towards habitual control. These findings were restricted to female volunteers. Conclusions We provide direct evidence that the balance between goal-directed and habitual control in humans is dopamine dependent. The results are discussed in light of gender differences in dopamine function and psychopathologies

    Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Get PDF
    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.A special acknowledgement to Karl Deisseroth from Stanford University, for providing viral constructs and for comments on the manuscript, and to Alan Dorval from the University of Utah, for providing mouse strains. Thanks to Luis Jacinto, Joao Oliveira and Joana Silva that helped in some technical aspects of the experiments. C.S.-C., B.C., A.D.-P. and S.B. are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/51992/2012; SFRH/BD/98675/2013; SFRH/BD/90374/2012; SFRH/BD/89936/2012). A.J.R. is a FCT Investigator (IF/00883/2013). This work was co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Part of the work was supported by the Janssen Neuroscience Prize (1st edition).info:eu-repo/semantics/publishedVersio

    A reafferent and feed-forward model of song syntax generation in the Bengalese finch

    Get PDF
    Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the auditory to the motor control area. Propagating synfire activity in the HVC codes for individual syllables of the song and priming signals from the auditory network reduce the competition between syllables to allow only those transitions that are permitted by the syntax. Both imprinting of song syntax within HVC and the interaction of the reafferent signal with an efference copy of the motor command are sufficient to explain the gradual loss of syntax in the absence of auditory feedback. The model also reproduces for the first time experimental findings on the influence of altered auditory feedback on the song syntax generation, and predicts song- and species-specific low frequency components in the LFP. This study illustrates how sequential compositionality following a defined syntax can be realized in networks of spiking neurons

    Parkinson's disease and dopaminergic therapyβ€”differential effects on movement, reward and cognition

    Get PDF
    Cognitive deficits are very common in Parkinson's disease particularly for β€˜executive functions’ associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex relationship between the specific cognitive problems faced by an individual patient, their stage of disease and dopaminergic treatment. We used a bimodality continuous performance task during fMRI to examine how patients with Parkinson's disease represent the prospect of reward and switch between competing task rules accordingly. The task-switch was not separately cued but was based on the implicit reward relevance of spatial and verbal dimensions of successive compound stimuli. Nineteen patients were studied in relative β€˜on’ and β€˜off’ states, induced by dopaminergic medication withdrawal (Hoehn and Yahr stages 1–4). Patients were able to successfully complete the task and establish a bias to one or other dimension in order to gain reward. However the lateral prefrontal cortex and caudate nucleus showed a non-linear U-shape relationship between motor disease severity and regional brain activation. Dopaminergic treatment led to a shift in this U-shape function, supporting the hypothesis of differential neurodegeneration in separate motor and cognitive cortico–striato–thalamo–cortical circuits. In addition, anterior cingulate activation associated with reward expectation declined with more severe disease, whereas activation following actual rewards increased with more severe disease. This may facilitate a change in goal-directed behaviours from deferred predicted rewards to immediate actual rewards, particularly when on dopaminergic treatment. We discuss the implications for investigation and optimal treatment of this common condition at different stages of disease

    Temporal-Difference Reinforcement Learning with Distributed Representations

    Get PDF
    Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the believed state of the world to distribute across sets of equivalent states. Distributed exponential discounting factors produce hyperbolic discounting in the behavior of the agent itself. We examine these issues in the context of a TD RL model in which state-belief is distributed over a set of exponentially-discounting β€œmicro-Agents”, each of which has a separate discounting factor (Ξ³). Each Β΅Agent maintains an independent hypothesis about the state of the world, and a separate value-estimate of taking actions within that hypothesized state. The overall agent thus instantiates a flexible representation of an evolving world-state. As with other TD models, the value-error (Ξ΄) signal within the model matches dopamine signals recorded from animals in standard conditioning reward-paradigms. The distributed representation of belief provides an explanation for the decrease in dopamine at the conditioned stimulus seen in overtrained animals, for the differences between trace and delay conditioning, and for transient bursts of dopamine seen at movement initiation. Because each Β΅Agent also includes its own exponential discounting factor, the overall agent shows hyperbolic discounting, consistent with behavioral experiments

    Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour

    Get PDF
    BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link
    • …
    corecore