7,579 research outputs found

    Alternating groups and moduli space lifting Invariants

    Full text link
    Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves Fried-Serre on deciding when sphere covers with odd-order branching lift to unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp. odd) theta functions when r is even (resp. odd). For inner spaces the result is independent of r. Another use appears in, http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for the prime p=2 lying over Hurwitz spaces first studied by, http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*) High tower levels are general-type varieties and have no rational points.For infinitely many of those MTs, the tree of cusps contains a subtree -- a spire -- isomorphic to the tree of cusps on a modular curve tower. This makes plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs. Establishing these modular curve-like properties opens, to MTs, modular curve-like thinking where modular curves have never gone before. A fuller html description of this paper is at http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from proof sheets, but does include some proof simplification in \S

    Superwind-driven Intense H2_2 Emission in NGC 6240 II: Detailed Comparison of Kinematical and Morphological Structures of the Warm and Cold Molecular Gas

    Full text link
    We report on our new analysis of the spatial and kinematical distribution of warm and cold molecular gas in NGC 6240, which was undertaken to explore the origin of its unusually luminous H2_2 emission. By comparing three-dimensional emission-line data (in space and velocity) of CO (J=2-1) in the radio and H2_2 in the near infrared, we are able to study the H2_2 emitting efficiency, defined in terms of the intensity ratio of H2_2 to CO [II(H2_2)/II(CO)], as a function of velocity. The integrated H2_2 emitting efficiency is calculated by integrating the velocity profile of H2_2 emitting efficiency in blue, red, and total (blue + red) velocity regions of the profile. We find that (1) both the total H2_2 emitting efficiency and the blue-to-red ratio of the efficiency are larger in regions surrounding the CO and H2_2 intensity peaks, and (2) the H2_2 emitting efficiency and the kinematical conditions in the warm molecular gas are closely related to each other. A collision between the molecular gas concentration and the external superwind outflow from the southern nucleus seems plausible to explain these characteristics, since it can reproduce the enhanced emitting efficiency of blueshifted H2_2 around the molecular gas concentration, if we assume that the superwind blows from the southern nucleus toward us, hitting the entire gas concentration from behind. In this model, internal cloud-cloud collisions within the molecular gas concentration are enhanced by the interaction with the superwind outflow, and efficient and intense shock-excited H2_2 emission is expected as a result of the cloud-crushing mechanism.Comment: 12 pages, 6 figures, accepted for publication in A

    About the morphology of dwarf spheroidal galaxies and their dark matter content

    Get PDF
    The morphological properties of the Carina, Sculptor and Fornax dwarfs are investigated using new wide field data with a total area of 29 square degrees. The stellar density maps are derived, hinting that Sculptor possesses tidal tails indicating interaction with the Milky Way. Contrary to previous studies we cannot find any sign of breaks in the density profiles for the Carina and Fornax dwarfs. The possible existence of tidal tails in Sculptor and of King limiting radii in Fornax and Carina are used to derive global M/L ratios, without using kinematic data. By matching those M/L ratios to kinematically derived values we are able to constrain the orbital parameters of the three dwarfs. Fornax cannot have M/L smaller than 3 and must be close to its perigalacticon now. The other extreme is Sculptor that needs to be on an orbit with an eccentricity bigger than 0.5 to be able to form tidal tails despite its kinematic M/L.Comment: 9 pages, 7 figures, accepted by A&

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Get PDF
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio

    Rapid Oscillations in Cataclysmic Variables. XV. HT Camelopardalis (= RX J0757.0+6306)

    Full text link
    We present photometry and spectroscopy of HT Camelopardalis, a recently discovered X-ray-bright cataclysmic variable. The spectrum shows bright lines of H, He I, and He II, all moving with a period of 0.059712(1) d, which we interpret as the orbital period. The star's brightness varies with a strict period of 515.0592(2) s, and a mean full amplitude of 0.11 mag. These properties qualify it as a /bona fide/ DQ Herculis star (intermediate polar) -- in which the magnetism of the rapidly rotating white dwarf channels accretion flow to the surface. Normally at V=17.8, the star shows rare and very brief outbursts to V=12-13. We observed one in December 2001, and found that the 515 s pulse amplitude had increased by a factor of ~100 (in flux units). A transient orbital signal may also have appeared.Comment: PDF, 19 pages, 3 tables, 6 figures; accepted, in press, to appear June 2002, PASP; more info at http://cba.phys.columbia.edu

    The Wisconsin H-Alpha Mapper Northern Sky Survey

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has surveyed the distribution and kinematics of ionized gas in the Galaxy above declination -30 degrees. The WHAM Northern Sky Survey (WHAM-NSS) has an angular resolution of one degree and provides the first absolutely-calibrated, kinematically-resolved map of the H-Alpha emission from the Warm Ionized Medium (WIM) within ~ +/-100 km/s of the Local Standard of Rest. Leveraging WHAM's 12 km/s spectral resolution, we have modeled and removed atmospheric emission and zodiacal absorption features from each of the 37,565 spectra. The resulting H-Alpha profiles reveal ionized gas detected in nearly every direction on the sky with a sensitivity of 0.15 R (3 sigma). Complex distributions of ionized gas are revealed in the nearby spiral arms up to 1-2 kpc away from the Galactic plane. Toward the inner Galaxy, the WHAM-NSS provides information about the WIM out to the tangent point down to a few degrees from the plane. Ionized gas is also detected toward many intermediate velocity clouds at high latitudes. Several new H II regions are revealed around early B-stars and evolved stellar cores (sdB/O). This work presents the details of the instrument, the survey, and the data reduction techniques. The WHAM-NSS is also presented and analyzed for its gross properties. Finally, some general conclusions are presented about the nature of the WIM as revealed by the WHAM-NSS.Comment: 42 pages, 14 figures (Fig 6-9 & 14 are full color); accepted for publication in 2003, ApJ, 149; Original quality figures (as well as data for the survey) are available at http://www.astro.wisc.edu/wham

    Zenith-Distance Dependence of Chromatic Shear Effect: A Limiting Factor for an Extreme Adaptive Optics System

    Get PDF
    Consider a perfect AO system with a very fine wavefront sampling interval and a very small actuator interval. If this AO system senses wavefront at a wavelength, lambda_{WFS}, and does science imaging at another wavelength, lambda_{SCI}, the light paths through the turbulent atmosphere at these two wavelengths are slightly different for a finite zenith distance, z. The error in wavefront reconstruction of the science channel associated with this non-common path effect, or so-called chromatic shear, is uncorrectable and sets an upper bound of the system performance. We evaluate the wavefront variance, sigma^2(lambda_{WFS},lambda_{SCI},z) for a typical seeing condition at Mauna Kea and find that this effect is not negligible at a large z. If we require that the Strehl ratio be greater than 99 or 95%, z must be less than about 50 or 60 deg respectively, for the combination of visible wavefront sensing and infrared science imaging.Comment: To appear in 2006/12/01 issue of Ap

    Thermodynamic Modeling of Fluid Polyamorphism in Hydrogen at Extreme Conditions

    Full text link
    Fluid polyamorphism, the existence of multiple amorphous fluid states in a single-component system, has been observed or predicted in a variety of substances. A remarkable example of this phenomenon is the fluid-fluid phase transition in high-pressure hydrogen between insulating and conducting high-density fluids. This transition is induced by the reversible dimerization/dissociation of the molecular and atomistic states of hydrogen. In this work, we present the first attempt to thermodynamically model the fluid-fluid phase transition in hydrogen at extreme conditions. Our predictions for the phase coexistence and the reaction equilibrium of the two alternative forms of fluid hydrogen are based on experimental data and supported by the results of simulations. {Remarkably, we find that the law of corresponding states can be utilized to construct a unified equation of state combining the available computational results for different models of hydrogen and the experimental data.Comment: Manuscript intended for JC

    A New Strategy for Deep Wide-Field High Resolution Optical Imaging

    Get PDF
    We propose a new strategy for obtaining enhanced resolution (FWHM = 0.12 arcsec) deep optical images over a wide field of view. As is well known, this type of image quality can be obtained in principle simply by fast guiding on a small (D = 1.5m) telescope at a good site, but only for target objects which lie within a limited angular distance of a suitably bright guide star. For high altitude turbulence this 'isokinetic angle' is approximately 1 arcminute. With a 1 degree field say one would need to track and correct the motions of thousands of isokinetic patches, yet there are typically too few sufficiently bright guide stars to provide the necessary guiding information. Our proposed solution to these problems has two novel features. The first is to use orthogonal transfer charge-coupled device (OTCCD) technology to effectively implement a wide field 'rubber focal plane' detector composed of an array of cells which can be guided independently. The second is to combine measured motions of a set of guide stars made with an array of telescopes to provide the extra information needed to fully determine the deflection field. We discuss the performance, feasibility and design constraints on a system which would provide the collecting area equivalent to a single 9m telescope, a 1 degree square field and 0.12 arcsec FWHM image quality.Comment: 46 pages, 22 figures, submitted to PASP, a version with higher resolution images and other supplementary material can be found at http://www.ifa.hawaii.edu/~kaiser/wfhr
    • 

    corecore